Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

RAG研究报告有哪些

Answer

以下是一些关于 RAG 的研究报告:

  1. 《RAG 系统开发中的 12 大痛点及解决方案》:研究了开发检索增强生成(RAG)系统时遇到的 12 个主要难题,并提出了相应的解决策略。通过将挑战和解决方法并列在一张表中,更直观地展示了设计和实施 RAG 系统面临的复杂挑战。
  2. 《小七姐:精读翻译《提示词设计和工程:入门与高级方法》》:提到在解决预训练大型语言模型(LLM)的限制方面,RAG 成为关键创新,通过动态整合外部知识扩展了 LLM。还介绍了 RAG 感知提示词技术,如 FLARE 以创新方法增强 LLM 性能。
  3. 《通过增强 PDF 结构识别,革新检索增强生成技术(RAG)》:包含对 PDF 识别对 RAG 影响的实验研究,通过列举 ChatDOC 在查询特斯拉用户手册中的具体案例,突出了 ChatDOC 解析方法在处理表格和呈现方式上的有效性。
Content generated by AI large model, please carefully verify (powered by aily)

References

RAG 系统开发中的 12 大痛点及解决方案

我们研究了在开发检索增强生成(RAG)系统时遇到的12个主要难题(包括原论文中的7个和我们额外发现的5个),并提出了针对每个难题的解决策略。以下图表改编自原始论文《开发检索增强生成系统时的七个常见挑战》中的图表,详见下方链接。图示改编自《开发检索增强生成系统时的七个常见挑战》。通过将这12个挑战及其建议的解决方法并列在一张表中,我们现在可以更直观地理解这些问题及其对策:论文《开发检索增强生成系统时的七个常见挑战》中提到的问题标有星号。尽管这份列表并不完整,但旨在向我们展示设计和实施RAG系统时面临的复杂挑战。我希望通过这份摘要,能够帮助读者更深入地理解这一领域,并激发开发更为强大且适用于生产环境的RAG应用的兴趣。祝编程愉快![heading3]

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

在解决预训练大型语言模型(LLM)的限制,特别是它们在访问实时或特定领域信息方面的局限性方面,检索增强生成(RAG)成为一个关键创新。RAG通过动态整合外部知识,扩展了LLM,从而丰富了模型的响应,使其包含了不在初始训练数据中的更新或特定信息。RAG通过从输入提示词中制定查询,并利用这些查询从多样化的来源(如搜索引擎,见图22)或知识图(见图23)中获取相关信息。这些检索到的内容被无缝集成到LLM的工作流程中,显著增强了其生成知情和与上下文相关响应的能力。[heading3]5.1 RAG感知提示词技术[content]RAG的出现促进了旨在充分利用其能力的复杂提示词技术的发展。其中,前瞻性主动检索增强生成(FLARE)以其创新方法增强LLM性能而脱颖而出。FLARE通过预测潜在内容并使用这些预测来指导信息检索,迭代地增强LLM输出。与传统RAG模型不同,后者通常在生成之前执行单一检索步骤,FLARE参与了一个连续的、动态的检索过程,确保生成内容的每个部分都得到最相关外部信息的支持。这个过程的特点是对每个生成部分的信心水平进行评估。当信心低于预定义的阈值时,FLARE提示词LLM使用内容作为查询进行额外的信息检索,从而用更新或更相关的数据完善响应。为了全面了解RAG、FLARE及相关方法,读者被鼓励参考关于检索增强生成模型的调查,该调查提供了对其演变、应用和对LLM领域影响的深入分析[18]。

通过增强PDF结构识别,革新检索增强生成技术(RAG)

为了使对比更加具体,我们列举了一些ChatDOC展现其优势的案例。[heading3]3.2.1案例A——查询特斯拉用户手册中的具体信息[content]案例A涉及特斯拉用户手册的查询,具体查询的是有关货物体积的信息。对于这个查询,ChatDOC和Baseline模型的表现分别如图9和图10所示。这两张图展示了检索到的最相关的分块和大语言模型的答案,还展示了包含相关分块的文档页面,并高亮显示这些分块。在这个案例中,两个模型都定位到了表格,但他们提供给大语言模型的文本不同,因此答案也不同。具体而言:ChatDOC识别到表格结构,以Markdown格式解释文本(如“检索到的文本块”部分所示),这使语言模型更容易理解。Baseline模型错误地将目标表格和上面的表格合并为一个分块,且没有表格结构。因此,分块中的文本不可被理解(如“检索到的文本块”部分所示),大语言模型只能回答“没有明确提到”。图9 ChatDOC模型在特斯拉用户手册中查找信息的结果(原始文档:[6])图10 Baseline模型在特斯拉用户手册中查找信息的结果(原始文档:[6])此案例突出了ChatDOC解析方法的有效性,特别是在处理表格和以易于大语言模型理解的方式呈现表格方面。

Others are asking
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来完成,如 Meta AI 引入的 RAG 方法。RAG 把信息检索组件和文本生成模型结合,可微调,内部知识修改高效,无需重新训练整个模型。它会接受输入并检索相关支撑文档,给出来源,与原始提示词组合后送给文本生成器得到输出,能适应事实变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识易过时且不好更新、输出难以解释和验证、易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库存储和更新稳定且无学习风险、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本。 在 RAG 系统开发中存在 12 个主要难题,并已有相应的解决策略。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
飞书智能伙伴创建平台 RAG实现
飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,能提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升,为企业探索大语言模型应用新篇章、迎接智能化未来提供理想选择。 在飞书智能伙伴创建平台上实现 RAG 相关应用有多种方式: 1. 利用飞书的知识库智能问答技术,引入 RAG 技术,通过机器人帮助用户快速检索内容。 2. 可以使用飞书的智能伙伴功能搭建 FAQ 机器人,了解智能助理的原理和使用方法。 3. 本地部署资讯问答机器人,如通过 Langchain + Ollama + RSSHub 实现 RAG,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。例如使用 feedparse 解析 RSS 订阅源,ollama 跑大模型(使用前需确保服务开启并下载好模型),使用文本向量模型 bgem3(如从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效向量存储)。 使用飞书智能伙伴创建平台的方式: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,需在找到最新二维码),点击加入,直接@机器人。 2. 在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 创建问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,存在局限性。 3. 需要用更先进的 RAG 技术解决问题。 4. 在群中提供快速检索信息的方式,使用更便捷。 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区情况,讨论了相关技术和应用场景,并介绍了企业级 agent 方面的实践。
2025-04-08
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景如知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-03
研究报告提示词
以下是关于研究报告提示词的相关内容: 首先要确定整个调研报告的大纲目录,可以利用老师提供的示例报告截图并用手机识别。然后确定整体的语言风格和特色,调研报告的语言风格通常是“逻辑清晰,层层递进,条理分明”,可将范文交给 Claude 2 总结语言风格。但要注意,生成文章时不要过于限制 GPT4,否则效果不佳。 接着让 GPT4 按照目录逐步生成章节内容,在 workflow 中设置循环结构,生成一段章节内容后经同意再进行下一部分,否则重新生成。生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息。这部分难度较大,可能导致半天才能搞定一条提示词,甚至迭代 1 天半,过程中可能会遇到 workflow 失效、插件选择和使用等问题。 好在通过向星球和群聊中的大佬求助,获得了建议和思路。比如在需要搜索网络信息的章节处打上标签,让 GPT4 看到标签后自主搜索信息再来生成内容,没打上标签的直接输出,这种方法可行。最后,按顺序完成 prompt 的其他部分。 最新版本的 prompt 经过以上操作得以完成,之前用前几版 prompt 已帮团队和同学完成 3 篇调研报告,但效果不及最新版。建议平时可利用 GPT4 降本增效,尝试编写提示词。
2025-04-15
我是医科大学的本科学生,我现在想用Ai帮助我书写论文和报告,我应该怎么系统学习?
以下是一些系统学习利用 AI 帮助书写论文和报告的建议: 一、了解常用的 AI 工具和平台 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、学习使用 AI 辅助撰写论文和报告的方法 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。 三、注意事项 1. AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 保持科学的态度和方法,遵循科学伦理原则。 3. 了解现阶段 AI 在教育领域应用的局限性,如知识适配的层次性问题、教育应用的安全性考量等。 希望以上内容对您有所帮助。
2025-04-14
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
2025年AI研究报告
以下是为您提供的 2025 年 AI 研究报告相关信息: Gartner:《生成式 AI 时代下科技产品的重要发展机遇》(2024/10/16) 强调了生成式 AI 技术对对话式 AI 和科技产品创新的显著影响。 预计到 2025 年,生成式 AI 将嵌入 80%的对话式 AI 产品中,推动市场营收大幅增长。 建议技术供应商积极把握机遇,通过理解市场动态、技术成熟度和市场接受度来调整策略。 生成式 AI 的四大关键能力—对话式 AI、AI 代理、合成数据和个性化—能够提升产品价值和客户体验。 提出了将生成式 AI 功能添加到产品中的四个关键步骤,并强调了独立软件供应商在企业应用中嵌入生成式 AI 能力的趋势。 如需下载研究报告,。 甲子光年:2025 DeepSeek 开启 AI 算法变革元年(2025/02/05) DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能。 报告强调 2025 年是算法变革的元年,DeepSeek 的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。 非 Transformer 架构的算法模型成为新的发展方向,如 LFM 架构模型性能超越同等规模的 Transformer 模型。 如需下载研究报告,。 安永:数据+AI 开启经验规模化复制时代(2023/12/19) 人工智能正在经历新的发展浪潮。 某头部公司正在转向 AI Agents 支持平台,结合第 4 代人工智能模型与专业语料库以实现业务创新。 AI Agents 有望为商业领域注入新活力,展示人工智能的潜力和商业价值。 随着平台的发展,新的 AI Agents 涌现,提供专业化、高端化、个性化、规模化、持续化的服务。 人工智能的革新涵盖了生成内容(AIGC)和生成服务(AIGS)的领域。 保险行业面临挑战,AI 的突破为其带来新的应对方向。 知识星球下载: 弘则研究:2023 生成式 AI 驱动向量数据库加速发展(2023/12/18) 向量数据库潜在市场空间是传统结构化关系型数据库的数倍达到千亿美元。 据信通院统计数据,全球数据库市场规模在 2020 年为 671 亿美元,到 2025 年有望达到 798 亿美元,CAGR 3.5%估算关系型数据库全球龙头 Oracle 收入规模小几百亿美元。 仅考虑现有非结构化数据的向量化处理,估算需要的存储空间增量为之前的数倍。 未来随着生成式 AI 应用增量数据的爆发对于向量数据库的需求会更大。 报告下载地址:
2025-04-09
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和在设计领域的应用发展的研究报告
以下是为您找到的一些可能符合您需求的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,包括智慧医疗、智慧教育、企业服务等,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。报告分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. 智能纪要:【跨界·未来】AIGC×视觉交互工作坊 Part1:AI 应用前瞻 2025 年 3 月 11 日。涵盖了 AI 在艺术创作中的应用与探索,包括 Lora 模型训练素材、模型训练比赛、Checkpoint 模型、线上与本地工作流、学习资源推荐、AI 创作挑战、装置艺术脉络、机械装置艺术理论、国内外装置艺术区别、AIGC 艺术尝试、机械进化与装置创作等方面。
2025-03-31
分析AI颠覆性发展的生产策略调查的研究情况综述
以下是关于企业构建和购买生成式 AI 方式的 16 个变化的研究情况综述: 生成式人工智能在 2023 年迅速席卷消费市场,创下超过 10 亿美元的消费支出纪录。预计 2024 年企业领域的收入机会将数倍于消费市场。去年,企业对 genAI 的参与多局限于少数明显用例,且以“GPTwrapper(GPT 套壳)”产品作为新的 SKU 交付,一些人对其在企业中的扩展持怀疑态度。 然而,在过去几个月,a16Z 与数十家财富 500 强和顶级企业领导人交谈并对 70 多位进行调查后发现,过去 6 个月里,企业对生成式 AI 的资源配置和态度有显著变化。尽管仍有保留,但企业领导人几乎将预算增加两倍,更多应用部署在较小的开源模型上,并将更多业务从早期实验转移到生产环境中。 这对创始人是巨大机遇。a16Z 认为,为客户“以 AI 为中心的战略计划”构建解决方案,能预见痛点,从重服务模式转向构建可扩展产品的人工智能初创公司,将抓住新投资浪潮并占据重要市场份额。 任何时候,为企业构建和销售产品都需深入了解客户预算、关注点和路线图。a16Z 根据访谈结果总结了 16 个最为关键的考虑因素,涉及资源、模型和应用。
2025-04-15
我是一名律师,怎么写好法律研究的提示词
作为一名律师,写好法律研究的提示词可以参考以下要点: 1. 理解 Prompt 的概念:Prompt 是给人工智能系统提供的信息或问题,用于引导其产生特定回答或执行特定任务,就像启动和引导对话的起点。对于 AI 来说,好的 Prompt 能帮助其更准确理解需求并给出更有用的回答。 2. 采用建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):明确希望 AI 的角色和能力,如专注于民商事法律领域,擅长案例研究、法律条文检索及案件策略分析。 Insight(洞察):提供背景信息和上下文,如处理复杂合同纠纷案件时,向 AI 提供案件关键事实、相关法律及背景。 Statement(陈述):直接明确期望 AI 完成的任务,如总结案件中双方诉求、检索法条、预测判决结果。 Personality(个性):确定希望 AI 以何种风格或方式回答。 Experiment(举例):通过举例进一步说明。 3. 转变思路:不要期待设计一个完美的提示词就能让 AI 百分百给出完美答案,提示词实际上是一个相对完善的“谈话方案”,成果需要在与 AI 的对话中产生。要多给 AI 几轮对话修正的余地,因为很多时候自己刚开始也不知道想要什么。 4. 示例:如陶力文律师习惯用的大模型是 KIMI,将提示词称为【灵机符箓】,把 AI 称为【灵机】。在具体的提示词中,明确作者、版本、语言等信息,赋予 AI 特定身份以划定边界,同时明确总的任务流程和关键变量,如基础材料和语言风格。
2025-04-11
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09