Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前发展到哪个阶段了

Answer

目前在 AI 领域,不同的技术和模型发展阶段有所不同。

以 GPT 为例,其发展大致经历了四个主要阶段:预训练、有监督微调、奖励建模、强化学习,每个阶段都有相应的数据集、算法和生成的模型。

对于 RAG 技术,其发展经历了初始阶段后的相对沉寂期,随后 ChatGPT 的出现使社区重点转向利用大语言模型的能力,随着大语言模型能力的不断提高,如 GPT-4 的推出,RAG 技术的格局发生重大变化,重点转向了 RAG 和微调优势相结合的混合方法。但该领域仍缺乏系统的整合和抽象。

在科技与生物科技结合方面,目前仍处于安装阶段,尽管处于初期,但已有一些初步迹象显示未来潜在巨头公司的可能形态。

Content generated by AI large model, please carefully verify (powered by aily)

References

GPT 的现状(State of GPT)

首先,让我们来看看训练这些助手的新兴配方。请记住,这一切都是非常新的,因此在快速发展。但到目前为止,这个配方大致如下:现在这是一个比较复杂的幻灯片,所以我会逐步解释它。大体而言,我们有四个主要阶段:预训练、有监督微调、奖励建模、强化学习。它们是按顺序依次执行的。现在,在每个阶段中,我们都有一个数据集来支持该阶段。我们有一个算法,这对于我们来说是一个训练神经网络的目标。然后我们得到了一个模型。底部还有一些注释。

开发:产品视角的大模型 RAG 应用

开发:产品视角的大模型RAG应用[heading1]一文看懂RAG:大语言模型落地应用的未来[heading2]RAG发展的四个阶段在这个初始阶段之后,出现了相对沉寂的时期,与RAG相关的研究进展较少。随后chatGPT()的出现标志着LLMs领域的重要时刻,社区的重点转向利用LLMs的能力来实现更高的可控性和解决不断变化的需求。因此,大部分RAG工作集中在推断上,只有少数工作致力于微调过程。随着LLMs能力的不断提高,特别是GPT-4的推出,RAG技术的格局发生了重大变化。重点转向了RAG和微调的优势相结合的混合方法,同时也有少数人继续关注优化预训练方法。尽管RAG研究迅速增长,但该领域缺乏系统的整合和抽象,这使得理解RAG进展的全面情况变得困难。本论文旨在概述整个RAG过程,并包括当前和未来的RAG研究方向,通过详细考察LLMs中的检索增强来实现这一目标。因此,本文的目标是全面总结和组织技术原理、发展历史、内容以及尤其是出现LLMs后的相关方法和应用,以及RAG的评估方法、应用场景和未来的发展方向。

新工业革命:生物技术×人工智能

我预计科技与生物科技(tech x bio)将走一条类似的道路。现在,我们正处于一个关键时刻,意识到我们需要具备工程化生物的能力,以及更完善的工程化它的能力(也就是说,我们仍然处于安装阶段)。在科技行业,互联网的类似阶段催生了像亚马逊和谷歌这样的大型公司。考虑到这两大趋势的组合效应——以及健康医疗市场的巨大规模和挑战——我们应该预期看到几家潜在的万亿美元规模的公司崛起:终于出现了一个与GAFA(Google、Amazon、Facebook、Apple)相当的生物科技版GAFA。对于科技与生物科技的创始人来说,这意味着他们的抱负可以比以往任何时候都更大、更容易实现,只要他们能够执行。对于整个行业来说,这意味着解决医疗保健的系统性和结构性问题的途径,这些问题目前被错误地碎片化或整合(更不用说技术可以绕过根深蒂固的孤岛和结构)。最重要的是,对于我们所有人来说,工业生物复合体的成果应该通过大大改善的护理和更便宜的成本,带来更健康、更长寿和更富裕的生活。尽管仍然处于初期阶段,但已经有一些初步的迹象表明,未来正在崛起的生物科技GAFA(类似谷歌、亚马逊、Facebook和苹果那样的巨头)公司可能会是什么样子:

Others are asking
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
介绍AI基本概念和目前发展阶段
AI 的基本概念: 人工智能(AI)是指让计算机模拟人类智能的技术。 主要分支包括机器学习、深度学习、自然语言处理等,它们之间存在密切联系。 目前发展阶段: 已取得显著进展,如聊天机器人具备基本对话能力,能用于客户服务和简单查询响应。 推理者如 ChatGPT 能解决复杂问题并提供详细分析和意见。 智能体虽能执行部分自动化业务,但仍需人类参与。 创新者如谷歌 DeepMind 的 AlphaFold 模型能协助人类完成新发明。 最高级别的组织型 AI 能自动执行组织的全部业务流程,但尚未完全实现。 对于新手学习 AI: 建议阅读「」熟悉术语和基础概念。 浏览入门文章了解历史、应用和发展趋势。 在「」中找到初学者课程,特别推荐李宏毅老师的课程。 通过在线教育平台按自己节奏学习并获取证书。 根据兴趣选择特定模块深入学习,掌握提示词技巧。 理论学习后进行实践,尝试使用各种产品并分享实践成果。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人。 如果希望继续精进 AI: 了解 AI 背景知识,包括基础理论、历史发展。 掌握数学基础,如统计学、线性代数、概率论。 熟悉算法和模型,如监督学习、无监督学习、强化学习。 学会评估和调优模型性能。 了解神经网络基础,包括网络结构和激活函数。
2025-03-20
现在人工智能处于什么阶段
目前人工智能仍处于“任务渗透”阶段,而非“职业颠覆”。最常用于编程(37%)和写作(10%),对体力劳动和专业职业影响较小。中等收入、高学历职业的 AI 采用率最高,低收入和极高收入的较低。AI 增强人类工作的比例(57%)大于完全自动化(43%),短期内主要是辅助工具,而非取代人工。未来可能从“人机共创”模式向“任务外包”模式演进。 在过去,20 世纪 60 年代人工智能的研究更多处于理论阶段,不能实用。但随着计算机算力的增长,神经网络取得了突破。例如,2009 年和 2012 年分别在语音识别和图像识别比赛中取得成功。 如今,AI 产品在客户支持、法律服务和软件工程等行业展示了与市场的契合度,生成式人工智能正在经历快速增长,但也存在投资回报、融资环境不均衡、用户保留率等问题。预计 2024 年将是真正的 AI 应用从“副驾驶”转变为“人类代理”的一年,未来将更有能力完成更高层次的认知任务。
2025-03-06
AI的应用要经历哪几个阶段
AI 的应用通常要经历以下几个阶段: 1. 聊天机器人阶段:这是 AI 应用的初始阶段,主要实现简单的对话功能。 2. 推理系统阶段:能够进行一定的逻辑推理和分析。 3. 智能体阶段:构建具备自主思考、决策和执行能力的智能体。 4. 创新者阶段:在某些领域展现出创新能力。 5. 完整组织阶段:形成完整的、综合性的组织形式,发挥更强大的作用。
2025-03-06
现阶段AI应用软件有哪些好用的
以下是一些好用的现阶段 AI 应用软件: AI 摄影参数调整助手:使用图像识别、数据分析技术,常见于摄影 APP 中,能根据场景自动调整摄影参数,市场规模达数亿美元。 AI 音乐情感分析平台:运用机器学习、音频处理技术,有音乐情感分析软件,可分析音乐的情感表达,市场规模达数亿美元。 AI 家居智能照明系统:基于物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 AI 金融风险预警平台:采用数据分析、机器学习技术,有金融风险预警软件,能提前预警金融风险,市场规模达数十亿美元。 AI 旅游路线优化平台:借助数据分析、自然语言处理技术,如马蜂窝路线优化功能,可根据用户需求优化旅游路线,市场规模达数亿美元。 AI 儿童安全座椅推荐系统:通过数据分析、机器学习,如宝宝树安全座椅推荐,为家长推荐合适的儿童安全座椅,市场规模达数亿美元。 AI 汽车保养套餐推荐系统:利用数据分析、机器学习,如途虎养车保养推荐,根据车辆情况推荐保养套餐,市场规模达数十亿美元。 AI 物流快递柜管理系统:基于数据分析、物联网技术,如丰巢快递柜管理系统,优化快递柜使用效率,市场规模达数十亿美元。 AI 招聘面试模拟平台:运用自然语言处理、机器学习,如智联招聘面试模拟功能,帮助求职者进行面试模拟,市场规模达数亿美元。 AI 房地产装修设计平台:借助图像生成、机器学习,如酷家乐装修设计软件,为用户提供装修设计方案,市场规模达数十亿美元。 AI 游戏道具推荐系统:通过数据分析、机器学习,如游戏内商城推荐功能,根据玩家需求推荐游戏道具,市场规模达数亿美元。 AI 天气预报分时服务:采用数据分析、机器学习技术,如彩云天气分时预报,提供精准的分时天气预报,市场规模达数亿美元。 AI 医疗病历分析平台:利用数据分析、自然语言处理,如医渡云病历分析系统,分析医疗病历,辅助诊断,市场规模达数十亿美元。 AI 会议发言总结工具:借助自然语言处理、机器学习,如讯飞听见会议总结功能,自动总结会议发言内容,市场规模达数亿美元。 AI 书法作品临摹辅助工具:通过图像识别、数据分析,如书法临摹软件,帮助书法爱好者进行临摹,市场规模达数亿美元。
2025-03-03
现阶段AI应用有哪些
现阶段 AI 应用主要包括以下方面: 1. AI 视频生成: 专业创作者(艺术家、影视人等):能够为作品赋予独特风格和想象力,提供灵感,降低后期制作门槛和成本,目前主要集中在音乐 MV、短篇电影、动漫等方向。 自媒体、非专业创作者:解决视频剪辑痛点,如快速生成脚本分镜、视频,将文章高效转 PPT 再转视频,解决同一素材在不同平台分发的成本问题。 企业客户:为小企业、非盈利机构大幅缩减视频制作成本。 2. 交通领域: 自动驾驶:提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 3. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,从使用场景来看,还包括改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 等方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区等。目前产品大多分布在 PC 端。
2025-03-03
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
完全免費的AI工具目前有哪些
目前完全免费的 AI 工具包括: 1. 麻省理工学院(MIT)为 8 18 岁孩子推出的 AI 课程 Day of AI,包含在 MIT 的 RAISE 项目中。不过该课程资源主要面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。 2. 元子提到的一些能让普通人最低成本直接上手试的 AI 工具,包括聊天工具、绘画工具、视频工具、音乐工具等,但未具体指明具体的工具名称。
2025-04-13
gemini-2.5目前是什么水平
Gemini 2.5 是一款全能思考模型,具有以下特点和优势: 多领域达到 SOTA 水平,逻辑、代码、任务处理能力大幅提升。 支持 100 万 tokens 上下文,具备强大的阅读能力。 统一架构原生多模态支持,图文音码协同处理,并非外挂而是原生融合。 您可以通过以下链接获取更多详细信息:https://www.xiaohu.ai/c/xiaohuai/googlegemini25proexperimental
2025-04-13
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13
分析AI颠覆性发展的生产策略调查的研究情况综述
以下是关于企业构建和购买生成式 AI 方式的 16 个变化的研究情况综述: 生成式人工智能在 2023 年迅速席卷消费市场,创下超过 10 亿美元的消费支出纪录。预计 2024 年企业领域的收入机会将数倍于消费市场。去年,企业对 genAI 的参与多局限于少数明显用例,且以“GPTwrapper(GPT 套壳)”产品作为新的 SKU 交付,一些人对其在企业中的扩展持怀疑态度。 然而,在过去几个月,a16Z 与数十家财富 500 强和顶级企业领导人交谈并对 70 多位进行调查后发现,过去 6 个月里,企业对生成式 AI 的资源配置和态度有显著变化。尽管仍有保留,但企业领导人几乎将预算增加两倍,更多应用部署在较小的开源模型上,并将更多业务从早期实验转移到生产环境中。 这对创始人是巨大机遇。a16Z 认为,为客户“以 AI 为中心的战略计划”构建解决方案,能预见痛点,从重服务模式转向构建可扩展产品的人工智能初创公司,将抓住新投资浪潮并占据重要市场份额。 任何时候,为企业构建和销售产品都需深入了解客户预算、关注点和路线图。a16Z 根据访谈结果总结了 16 个最为关键的考虑因素,涉及资源、模型和应用。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
现在Ai已经发展到什么程度了
目前 AI 的发展已不再局限于单一的技术和应用范畴,而是融合了众多学科知识,并深入渗透到生活的各个层面,引发了一场生产力的革命。 有观点认为,AI 引领的是第四次工业革命的浪潮:继蒸汽机引发的机械化变革、电力驱动的电气化革新,以及电脑普及带来的信息化浪潮之后,AI 正推动着智能化时代的到来。 2025 开年 3 个月,AI 已经狂飙!R1 席卷全球,然后是 O3、Grok 3、Claude 3.7、GPT4.5 等,短短 3 个月内,AI 更新密集发布。然而很多人仍未察觉 AI 正在指数级加速,甚至抱怨 GPT4.5 表现不佳,但事实上,AI 发展已经是直线拉升状态,每天都在进步。 此外,Grok 语音模式已全面开放,支持 11 种模式(包括 2 种 18 禁),自带语音字幕,是学习英语的好工具,但目前仅支持英文。
2025-04-13