Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

具身智能的前景

Answer

具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。

其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。身体不仅是与环境互动的手段,也影响智能体的学习和发展。

具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。

具身智能在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用,也在虚拟现实、增强现实和游戏设计等领域广泛应用,能创造更具沉浸感和交互性的体验。

具身智能的范式是将机器学习算法适配至物理实体,与物理世界交互,如以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,具身智能体则将大模型嵌入物理实体,通过传感器与人类交流。

具身智能有人形机器人等代表产品,其有三要素:本体(硬件载体)、智能(大模型、算法等)、环境,且不同环境有不同形态的硬件本体适应。其行动分为感知、决策、行动、反馈四个模块形成闭环。

尽管具身智能取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境学习、伦理和安全问题等,未来研究将继续探索以推动其发展和应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:具身智能是什么?

具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

这样的全模态智能体,将会成为我们和所有智能设备的新交互界面。进一步想象,家庭和办公环境的电子设备,只要联网就能成为智能体的感知器,或者直接成为他们的终端,被智能体控制;再结合具身智能(Embodied AI)技术,那就是现实版的Ghost in the shell了。。

一篇具身智能的最新全面综述!(上)

具身智能,即“具身+智能”,是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以ChatGPT为代表的“软件智能体”(或称“离身智能体”)使用大模型通过网页端、手机APP与用户进行交互,能够接受语音、文字、图片、视频的多种模态的用户指令,从而实现感知环境、规划、记忆以及工具调用,执行复杂的任务。在这些基础之上,具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流,强调智能体与物理环境之间的交互。通俗一点讲,就是要给人工智能这个聪明的“头脑”装上一副“身体”。这个“身体”可以是一部手机,可以是一台自动驾驶汽车。而人形机器人则是集各类核心尖端技术于一体的载体,是具身智能的代表产品。具身智能的三要素:本体、智能、环境具身智能的三要素:“本体”,即硬件载体; “智能”,即大模型、语音、图像、控制、导航等算法; “环境”,即本体所交互的物理世界。本体、智能、环境的高度耦合才是高级智能的基础。不同环境下的会有不同形态的硬件本体以适应环境。比如室内平地更适用轮式机器人,崎岖不平的地面更适用四足机器人(机器狗)。在具身智能体与环境的交互中,智能算法可以通过本体的传感器以感知环境,做出决策以操控本体执行动作任务,从而影响环境。在智能算法与环境的交互中还可以通过“交互学习”和拟人化思维去学习和适应环境,从而实现智能的增长。具身智能的四个模块:感知-决策-行动-反馈一个具身智能体的行动可以分为“感知-决策-行动-反馈”四个步骤,分别由四个模块完成,并形成一个闭环。感知模块

Others are asking
具身智能是什么技术?用小学生能理解的话术回答
小朋友,具身智能呀,是人工智能里的一种很有趣的技术。 它说的是像机器人、虚拟代理这样的智能体,要通过和真实世界或者虚拟环境直接打交道来变得更聪明。 比如说,智能体要有能感觉周围环境的能力,能自己到处走,能拿东西、操作东西,还能学习新本领,适应新环境。 具身智能很在意智能体的“身体”,这个“身体”可以是机器人的样子,也可以是游戏里的虚拟角色。这些“身体”能帮智能体和环境互动,还会影响智能体学习。 像机器人可以通过它的手学会抓东西、摆弄东西,虚拟代理在游戏里能学会解决问题。 研究具身智能要用到好多知识,像机器人学、认知科学、神经科学还有计算机视觉。 在机器人领域,具身智能能让机器人更好地理解和适应我们人类的生活环境,跟我们交流更自然。在虚拟现实、增强现实和游戏里,也能让我们玩得更开心。 不过呢,具身智能还有一些难题要解决,比如怎么设计智能体的身体让它更聪明,怎么让它在复杂的环境里好好学习,还有怎么处理它和人类社会相关的一些问题。 简单说,具身智能就是给聪明的人工智能装上“身体”,让它能和周围环境更好地交流互动。
2025-04-05
具身智能最核心的技术热点是什么
具身智能最核心的技术热点包括以下方面: 1. 人机混合增强智能标准:规范多通道、多模式和多维度的交互途径、模式、方法和技术要求,如脑机接口、在线知识演化、动态自适应、动态识别、人机协同感知、人机协同决策与控制等。 2. 智能体标准:规范以通用大模型为核心的智能体实例及智能体基本功能、应用架构等技术要求,包括智能体强化学习、多任务分解、推理、提示词工程,智能体数据接口和参数范围,人机协作、智能体自主操作、多智能体分布式一致性等。 3. 群体智能标准:规范群体智能算法的控制、编队、感知、规划、决策、通信等技术要求和评测方法,包括自主控制、协同控制、任务规划、路径规划、协同决策、组网通信等。 4. 跨媒体智能标准:规范文本、图像、视频、音频等多模态数据处理基础、转换分析、融合应用等方面的技术要求,包括数据获取与处理、模态转换、模态对齐、融合与协同、应用扩展等。 5. 具身智能标准:规范多模态主动与交互、自主行为学习、仿真模拟、知识推理、具身导航、群体具身智能等。 具身智能需要具备感知、决策和执行三种核心能力。执行能力是技术难点,涉及硬件设计,具身智能体主要分为移动和操作两大能力。移动方面,各种类型机器人在不同地形下实现鲁棒的移动仍是前沿学术问题。操作方面,现阶段能落地的只有简单抓取,可泛化的通用执行能力是三大核心能力中最短的板。大语言模型(LLM)为具身智能热潮来临提供了机会,其强泛化能力和 zeroshot 能力使不再需要为每个任务手工调校机器人。
2025-03-12
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 核心:在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是互动手段,也影响智能体的学习和发展。 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学:关注设计能自主行动和适应环境的机器人。 认知科学和神经科学:探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉:致力于开发算法,使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别。 应用: 机器人领域:在服务机器人、工业自动化和辅助技术等方面,使机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域:创造更具沉浸感和交互性的体验。 特点: 三要素:“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块:感知决策行动反馈,形成闭环。 面临挑战:如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习、处理智能体与人类社会的伦理和安全问题等。 尽管具身智能在理论和技术上取得显著进展,但仍有诸多挑战待解决,未来研究将继续探索推动其发展和应用。
2025-03-12
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 核心:在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是互动手段,也影响智能体的学习和发展。 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学:关注设计能自主行动和适应环境的机器人。 认知科学和神经科学:探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉:致力于开发使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别的算法。 应用: 机器人领域:在服务机器人、工业自动化和辅助技术等方面,使机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域:创造更具沉浸感和交互性的体验。 重要要素和模块: 三要素:“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块:感知决策行动反馈,形成一个闭环。 尽管具身智能在理论和技术上取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习、与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2025-03-10
具身智能是什么?
具身智能是人工智能领域的一个子领域,指的是智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法让智能体理解和解释视觉信息,进行有效空间导航和物体识别。 具身智能的应用广泛,在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域,能创造更具沉浸感和交互性的体验。 具身智能有三要素:本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),三者高度耦合是高级智能的基础。其行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习、处理智能体与人类社会的伦理和安全问题等。
2025-03-10
具身智能软硬件解决方案。
具身智能的软硬件解决方案包括以下方面: 算法层: 技术层级: 任务层级:可细分为任务级、技能级、动作级、基元级、伺服级,通常关注前四个级别。 解决方案层级:通常可拆分为大脑+小脑两个层级。大脑负责人机交互与规划决策,小脑负责运动控制及将语义信息理解转化为动作。 大脑侧:负责人机交互,能通过视觉在语义层面理解场景、任务等并进行决策。大模型的发展对大脑有促进作用,大脑的长期发展高度依赖多模态大模型。如 2024 年 3 月,有鹿机器人发布了基于 LPLM10B 的软硬件结合产品 Master 2000。 整机硬件方案:基于下游场景需求设计运动、感知、计算和通信硬件方案。具身智能厂商倾向于软硬件全流程自主控制,自己制作机体,原因包括机体和数据模式未统一,训练数据与机体构造紧密联系,以及考虑二级供应商是否成熟和整机利润。部分强大厂商如 Tesla 具备制作更底层电机、传感器的能力,软硬件一体化制造能带来更高利润。 智能类型:包括认知智能和物理智能。认知智能涉及思考、规划和决策能力,完全由大脑驱动;物理智能指机器人的感知和与环境的运动互动能力,感知环节由大脑侧算法实现,行动环节由小脑侧算法和硬件配合完成。 发展趋势: 人形化:外形向人类细部特征靠拢,功能具备真实人类运动、灵活和环境判断能力。 成本下降显著:核心零部件成本降低,人形机器人成本及售价呈下降趋势。 构成元素:包括大脑(意图理解、环境感知、规划决策)、小脑(运动控制、语义信息理解转化为动作)、整机硬件方案。
2025-03-07
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
想要做一节讲如何用智能体做企业数字化转型的课程,如何设计
以下是关于如何设计用智能体做企业数字化转型课程的建议: 一、参考案例 1. 李国宝的相关经验 具有丰富的从业经验,包括通信工程、数据通信网络培训、创业、网络安全解决方案及培训、AI 课程开发与培训等。 开发过面向不同群体的 AI 课程,如《数字化转型实践》面向传统企业数字化、AI 赋能转型。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用课程 从零开始教学做应用界面,先基础教学,再涉及特定应用。 介绍当前承接业务,包括辅导、培训、定制及企业 AI 落地等。 挖掘用户对 AI 应用的功能需求,如对交互界面的需求。 二、课程设计要点 1. 对于企业管理者 AI 辅助决策:在小规模决策中使用 AI 分析工具,以其分析结果作为决策参考。 员工培训计划:制定 AI 工具使用的培训计划,帮助团队成员了解日常工作中如何有效利用 AI。 流程优化:识别公司中可能受益于 AI 自动化的重复性任务,从小流程开始测试 AI 解决方案的效果。 AI 伦理和政策:制定公司的 AI 使用政策,确保 AI 应用符合伦理标准和法律要求。 2. 对于教育工作者 AI 辅助教案设计:尝试使用 AI 帮助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 个性化学习路径:探索使用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单的课程模块,教导学生了解 AI 基础知识、应用领域及其对社会的影响。 三、注意事项 无论面向哪个群体,都应记住:与 AI 协作是一个学习过程。从小处着手,保持好奇心和开放态度,会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。最重要的是,始终保持批判性思维,将 AI 视为强大的工具,而不是完全依赖的解决方案。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
langchain与dify哪个更有发展前景
LangChain 和 Dify 都是在 LLM 应用开发领域具有特点和优势的工具,难以简单地判断哪个更有发展前景。 LangChain 是一个编排框架,在提示链细节抽象、与外部 API 接口、从向量数据库检索上下文数据以及在多个 LLM 调用中维持内存等方面表现出色,为多种常见应用提供模板,在业余爱好者和初创公司中被广泛使用。但它目前仍是相对新的项目,且一些开发者在生产中更愿意切换到原生 Python 以消除额外依赖性。 Dify 是一个开源的 LLM 应用开发平台,具有快速部署、创意文档生成、长文档摘要、自定义 API、连接全球 LLM、更接近生产环境等优势。它允许用户编排从代理到复杂 AI 工作流的 LLM 应用,并配备了 RAG 引擎,旨在为特定行业提供聊天机器人和 AI 助手。 两者的发展前景取决于多种因素,如技术创新、市场需求、社区支持等。在不同的应用场景和需求下,它们各自都有发挥作用的空间和潜力。
2025-02-14
关于从事ai的就业前景
以下是关于从事 AI 就业前景的相关信息: 在 AI 时代,技术专业人士需要发展 AI 难以替代的技能,如团队建设、跨文化交流、创新解决方案的设计等。因为 AI 虽能输出代码,但无法建立团队、跨越文化交流或激发团队创造力,所以技术就业市场会为能融合技术智慧和人际交往能力的人提供机会。 对于从事可能被 AI 取代风险工作的技术工作者,需重新思考职业生涯规划,可能要学习新技能或转向更需要人类特质的工作领域。 生成式人工智能正在重塑技术就业市场的未来,带来挑战的同时也提供新机遇。技术专业人士关键在于理解并适应变化,发展不可替代的技能,在新生态中找到位置。 在就业方面: 1. 学生和应届毕业生:可通过相关产品了解 AI 技术在不同职业中的应用,评估兴趣和技能,选择职业路径并制定规划,还能根据职业目标获得个性化学习建议和资源提升技能。 2. 职场新人和职业转换者:职场新人能制定职业发展计划,明确短期和长期目标。希望从其他领域转型到 AI 相关领域的从业者,可获得详细转型路径和必要技能培训资源。 3. 企业:可利用产品评估应聘者 AI 技能水平,选择合适候选人,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才,为员工制定个性化职业发展计划,提升员工职业满意度和留任率。 4. 教育机构:可将相关产品作为学生职业指导一部分,帮助了解职业机会和发展路径,提升就业率,还能根据市场需求和学生职业规划优化课程设置,提供针对性 AI 技能培训。 5. 职业咨询师:可使用产品为客户提供更精准职业规划建议和技能评估,基于产品提供的市场数据和职业趋势分析,为客户提供更全面和前瞻性的职业指导。 此外,AI 就业市场存在一些情况: 1. 鱼龙混杂,求职者要做好信息甄别,除看招聘评价,还要提前收集其他信息。 2. 部分企业未搞懂 AI 能带来的价值,求职者要有咨询和商业化思维,帮公司厘清业务增长机会。 3. 不同公司对 AI 产品经理定位不同,岗位职责和任职要求也不同,会逐渐统一标准,这是产品经理转型的机会。 4. 有行业沉淀和认知的产品经理转型更有机会,目前应用层机会在“AI+行业”,只懂 AI 或行业是不够的,业务创新也很重要。
2025-02-10
学习ai以后就业前景如何
学习 AI 以后的就业前景较为乐观,但并非绝对。 人工智能领域存在许多高薪工作岗位,如数据科学家、机器学习工程师等。掌握 AI 技术能够在这些岗位上获得不错的收入,且 AI 技术在金融、医疗、制造业等众多行业均有应用,这增加了就业机会和职业发展的可能性。 然而,能否在该领域赚钱取决于多种因素。个人的学习能力、实际应用能力以及对市场和商业的理解等都至关重要。仅仅学会基础知识可能不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。 对于学生和应届毕业生而言,通过相关产品可以了解 AI 技术在不同职业中的应用,评估自身兴趣和技能,选择合适的职业路径并制定规划,还能根据职业目标获得个性化学习建议和资源以提升技能。 对于职场新人和职业转换者,可根据自身职业目标和市场需求制定发展计划,明确短期和长期目标。对于希望从其他领域转型到 AI 相关领域的从业者,能获得详细的转型路径和必要的技能培训资源以顺利转型。 企业可以利用相关产品评估应聘者的 AI 技能水平,选择合适的候选人,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 教育机构能将相关产品作为学生职业指导的一部分,帮助学生了解 AI 领域的职业机会和发展路径,提升就业率,还能根据市场需求和学生职业规划优化课程设置,提供更有针对性的 AI 技能培训。 职业咨询师可以使用相关产品为客户提供更精准的职业规划建议和技能评估,提升咨询服务质量和效率,并基于产品提供的市场数据和职业趋势分析为客户提供更全面和前瞻性的职业指导。 此外,AI 已经在许多领域带来了重大进步和效率提升,未来还有巨大的发展潜力,有望创造更多的就业岗位和推动经济增长。但这只是开始,随着 AI 变得更强大以及创新者探索新的应用方式,将会有更多的 AI 应用出现。
2025-02-10
AI 翻译有什么应用场景?发展前景如何
AI 翻译的应用场景广泛,包括但不限于以下方面: 1. 企业在多语言市场中的运营,便于与不同国家和地区的客户、合作伙伴进行有效的沟通和业务拓展。 2. 个人获取全球信息,打破语言障碍,更便捷地了解世界各地的知识和资讯。 3. 教育领域,国内外院校的合作教育分享更加便捷,促进知识的共享和共同学习。 4. 旅行中,帮助游客更好地理解当地的语言和文化。 5. 娱乐方面,为观众提供多语言的影视作品和娱乐内容。 AI 翻译的发展前景十分广阔: 1. 语言翻译技术经历了从传统规则翻译到深度学习翻译的逐步发展,每一次革新都显著提高了翻译的准确性和自然度。 2. 神经机器翻译(NMT)通过大规模语料库学习,能够更好地理解上下文和语境,提供更加流畅、准确的翻译。 3. 大模型技术的引入使得翻译进入一个新的阶段,超大规模预训练模型通过海量数据学习,能够精准捕捉语言的深层语义和文化背景,提供更符合语境的翻译,显著提升了翻译的准确性与流畅度。 例如,Meta AI 发布的实时人工智能语言翻译模型 Seamless,统一了之前的三个 Seamless 系列模型,可以实时翻译 100 多种语言,延迟不到 2 秒钟,还能保持说话者的情感和语气、语调等,使得翻译后的语音更加自然和真实。 此外,还有一些具体的开发案例,如用 whisper 生成原视频的英文字幕,让 GPT 结合字幕全文翻译并进行行数拆分,形成新的双语字幕文件;ChatGPT 助力数据分析等。
2025-02-06
数据标注这个行业前景如何
数据标注行业具有一定的前景,但也面临着一些变化和挑战。 从前景方面来看: 1. 数据质量成为提高模型性能的关键瓶颈,这使得数据标注的重要性日益凸显。 2. 多模态模型的发展需要更加细致和复杂的数据标注,为行业带来了更多需求。 3. 随着技术的进步,数据标注不再是简单的劳动力作业,而是向知识密集型转变,这要求从事标注的人员具备更高的专业水平和特定领域的知识,从而提升了行业的专业性和价值。 然而,也存在一些挑战: 1. 数据标注工作繁琐,数据清洗工作占据了大量时间。 2. 合成数据的使用虽然带来了便利,但也存在与真实数据分布不一致可能导致模型偏差等风险。 在数据标注的具体操作上,数据标注可以分为自动标注和手动标注。自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注则依赖标注人员。例如使用 BLIP 自动标注 caption 时,需要进行一系列的操作和配置。
2025-02-05
到目前为止,人工只能已经发展到什么样的一个程度了,未来前景怎么样?普通人如何通过人工智能挣到钱
目前人工智能的发展呈现出复杂的态势: 预计明年会有团体花费超过 10 亿美元训练单个大规模模型,通用人工智能的热潮仍在持续,但其成本也在不断增加。 政府和大型科技公司都面临着计算需求超出电网支持能力的问题。 人工智能对选举的影响尚未完全显现,但仍需关注。 以 OpenAI、Meta 以及中国实验室为代表,竞争激烈。 未来前景方面: 深度学习被证明有效,且随着规模扩大预期会改善,能帮助解决更多难题,对全球人民生活产生有意义的改善。 人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,并推动各领域科学进展。 对于普通人如何通过人工智能挣钱,以下是一些可能的途径: 学习相关技能,如编程、数据分析等,参与人工智能项目的开发和维护。 利用人工智能工具进行内容创作,如写作、绘画等,并通过相关平台实现盈利。 关注人工智能领域的新兴应用,寻找创业机会。
2025-02-05