Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI对我的指令理解不到位,我应该怎么训练它

Answer

以下是关于训练 AI 使其更好地理解您的指令的一些建议:

  1. 清楚表达自己的意图:这并非易事,例如像“五彩斑斓的黑”这类表述就容易让人困惑。要确保您的指令清晰明确,避免模糊和歧义。
  2. 让 AI 明白所有相关的上下文:在与人沟通时,常见的错误是一方假定对方明白自己知道的所有上下文,与 AI 交流也是如此。您需要思考如何清晰地交代上下文以及交代多少。
  3. 将复杂的任务拆分成简单的任务:就像管理者要帮助员工拆分复杂任务一样,对于 AI 也是如此。由于上下文不完整或任务复杂性,您需要将复杂任务拆分为几个简单任务让 AI 完成,甚至可能需要组建工作流,让多个 AI 智能体协同工作。
  4. 遵循 AI 编程准则:能不编,尽量不编。优先寻找线上工具、插件、本地应用、API 功能等现成的解决方案,例如制作白底图等功能,先找线上现成工具,其次找插件,最后考虑本地应用。对于 API 功能,先找现成开源工具,然后考虑付费服务,实在找不到才考虑自己编程。

总之,训练 AI 理解指令需要您在表达意图、提供上下文、任务拆分和选择合适解决方案等方面下功夫。

Content generated by AI large model, please carefully verify (powered by aily)

References

提示工程:反复崛起,反复被死亡

指令就是那些技巧之外的,你需要让AI能真正理解你意图,并且精确控制AI按照你的意图去完成任务的部分。其实这部分才是提示工程的核心部分,而且并不容易做好,因为它有很多难点:如何清楚的表达自己的意图表达清楚自己的意图其实很难,如果不能表达清楚,不管是AI还是人类,都很难懂你或者帮到你。比如说“五彩斑斓的黑”是什么颜色?如何让AI明白所有相关的上下文人和人沟通的时候,一个常见的错误就是一方假定对方明白自己知道的所有上下文,然后造成很多误解。跟AI也一样,但是如何让AI明白我们所处的上下文环境也是很有必要并且很难的事情:要如何交代清楚上下文,要交代多少上下文?如何将复杂的任务拆分成简单的任务我刚大学毕业那会,HR会给员工推荐一本书,叫《把信送给加西亚》,本来挺好的故事,但是被老板们用来教育员工:员工收到老板的指令,就应该像书中的安德鲁·罗文那样,没有任何推诿,不讲任何条件,历尽艰险,徒步走过危机四伏的国家,以其绝对的忠诚、责任感和创造奇迹的主动性完成“不可能的任务”,把信交给了加西亚。后来自己去管人了才知道,好的管理者要善于帮助员工将复杂的任务拆分成简单的任务,并且在过程中提供帮助和引导,而不是给一个指令就等着结果。让AI做事也是类似的,由于上下文的不完整,或者任务的复杂性,合格的提示工程师需要将复杂的任务拆分成几个简单的任务让AI去完成,甚至于需要组建一个完整的工作流,让多个AI智能体协同完成复杂的任务。如何精确的控制AI做事

周鸿祎免费课AI系列第二讲-企业如何拥抱AI

OpenAI在2021年据说已经把能找到的人类的知识文本都用完了,因为人类一共就写了1亿本书,那么多杂志期刊论文,只要数字化都可以穷尽。最后想了个方法,他们把YouTube上的视频下载了100万个小时,这原来我也预言过,就是用视频来做学习,他把里边的音轨导出来,把音轨转成文字,用这个文字来做对GPT做训练。所以这个让我们中国人工智能发展又看到了新的机会。因为过去老有人自我讽刺,老有人妄自菲薄,看不起我们国内的这些从业者,说世界上搞人工智能,他们在搞智能,我们在搞人工。但这个段子到今天有了正解,没有人工哪来的智能啊?我们将来发挥我们人口红利,培养很多的人工智能训练师,我们大量的产生像百度“弱智吧”这样的内容,这样可以给我们的人工智能做更好的训练。百度“弱智吧”里边充满了双关语,充满了深刻的逻辑和各种各样的梗,它对大模型提高逻辑能力、提升回答技能能力是非常显著的。多模态的发展,文生图的发展,ToC会继续涌现杀手级应用。知识工程成为大模型落地的决定性要素。无论做通用大模型还是做专有大模型,知识成为决定性,没有知识的大模型就是个傻子。Agent架构,最近吴恩达——著名的人工智能世界级科学家,讲了好几次Agent的课。他反复讲到Agent架构对大模型至关重要,这是我今天一个讲课的重点。还有人形具身智能机器人产业获得十倍速的发展。Figure AI跟GPT合作做的机器人进步很快,最近斯坦福那个机械臂当它操作不对的时候,能听懂人的指令。比如说把一个海绵塞到口袋里,海绵掉在地上,然后人就说把口袋撑大一点,那它就能够照着人的指令完成这个任务。

放下傲慢!停止自欺欺人!与其做 AI 的主人,不如做它的搭档

在许多情况下,我们只需给AI下达明确的命令来完成一次性任务,例如制作一个简单的Chrome插件、编写脚本、或创建Python爬虫。但当AI满足了我们简单的需求,并让我们获得正反馈之后,我们的期待也会不断提高,希望能进一步从繁琐的日常任务中解脱出来。这个时候,我们需要了解AI编程的边界和限制。[heading2]3.1 AI编程准则第一条:能不编,尽量不编[content]随着IT技术的发展,各种基础设施和工具越来越多,大多数需求都能找到现成的软件解决方案,只需权衡投入产出,进行评估即可。[搜索技巧的逆袭:在AI统治的世界中寻找价值](https://iaiuse.com/posts/af894b2a)成熟产品优先找线上工具:例如制作白底图等功能,如果线上有现成的工具那最好。其次找插件:基于现有系统找合适的插件。最后是本地应用:当线上工具和插件都不满足需求时,再考虑本地应用。API功能先找现成的开源工具,GitHub上很多。然后考虑付费服务。如果都找不到现成的方案,才考虑自己编程。毕竟,人生苦短,何必为难自己呢?如果真的需要动手编写,也要以终为始,抛开技术障碍,聚焦于目标。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
写作指令
以下是关于写作指令的相关内容: 拘灵遣将: 对文章中案例进行脱敏,替换人物姓名、时间和地点。 深化写作时,每次对话输出文章一个部分,各部分字数有规定。 敕代表告诫,明确工作中的禁忌事项和具体要求。 令包括初始化时的欢迎语,牢记符与敕的要求,先请求用户提供案例洞察报告和目标群体,用户提供并输入“依律奉行”后,先输出纲要和写作方案。 熊猫 Jay:万字解读 ChatGPT 提示词最佳实践: 最佳实践 1 是编写清晰的指令。 策略包括在查询中包含详细信息以获得更相关答案,要求模型扮演某个角色,使用分隔符清晰表示输入不同部分,指定完成任务所需步骤,提供示例,指定输出期望长度,提供参考文本。 策略 1 适用于新手,难度为 1 星,价值在于提供更多详细信息可获得更准确具体答案,减少模型猜测和误解,提高交互效率和满意度。 策略 2 适用于新手,难度为 1 星,通过指定角色使模型回答更具特色和针对性,提升输出质量。 OpenAI 官方提示工程指南: 撰写清晰的指令,模型无法读心,可根据输出情况要求调整。 技巧包括在查询中添加详细信息以获得更准确答案,请求模型扮演特定角色,使用分隔符清晰区分输入不同部分,明确指出完成任务需要的步骤,提供实例作为参考,明确指定希望输出的长度。
2025-04-14
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
ai降重指令
以下是关于 AI 降重指令的相关知识: Prompt 是用于指挥 AI 生成所需内容的一段指令,每个单独的提示词叫 tag(关键词)。支持的语言为英语(不用担心英语不好的问题,),emoji 也可以用。 语法规则: 用英文半角符号逗号,来分隔 tag,逗号前后有空格或者换行都不影响效果。 改变 tag 权重:tag 的顺序越靠前对于 SD 来说权重越大,可通过两种写法设置权重。一是 括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。 进行 tag 的步数控制(高级玩法):即 SD 先按输入的 tag1 开始生成,然后在达到设定的步数之后,tag1 停止产生作用,此时 tag2 再参与到对内容生成的影响,可表示为,数字大于 1 理解为第 X 步前为 tag1,第 X 步后变成 tag2,数字小于 1 理解为总步数的百分之 X 前为 tag1,之后变成 tag2。
2025-04-14
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
用deepseek写一份课题申报书,请提供相关指令
以下是一些用 DeepSeek 写课题申报书的相关指令和要点: 1. 思维链引导: 分步标记法:请逐步思考,如问题分析→方案设计→风险评估。 苏格拉底式追问:在得出最终结论前,先列举三个可能存在的认知偏差。 2. 知识库调用: 领域限定指令:基于特定的标准或文献,如 2023 版中国药典,说明相关内容。 文献引用模式:以特定的论文为参考,解释相关突破。 3. 多模态输出: 模糊指令优化:对于宽泛需求添加维度约束,将主观表述量化标准。 迭代优化法:包括首轮生成获取基础内容、特征强化、风格调整和最终校验等步骤。 4. 在课题申报书的内容方面: 关于提示词编写及 AI 应用的探讨:介绍用于不确定世界中理性决策的提示词编写方法,包括收集信息、重新定义问题、运用 Mini Max Regret 方法等步骤。注意示例的价值,自用与他用提示词在稳定性、经济性、可维护性等方面的区别。 AI 应用于软件开发:未来借助 AI 模型的 API 和编写提示词,可快速实现软件开发。 关于写作与模型:用 DeepSeek 写小说要能引起共鸣和考虑人类共性,文字要感动人。注意模型特点与推荐,如 Cloud 3.5 模型多样性差,DeepSeek R1 有缺陷但也不错。 以上内容仅供参考,您可以根据具体的课题需求进一步调整和完善。
2025-04-11
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09