Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI在未来多少年会颠覆式影响现在人的生活

Answer

AI 在未来对人类生活产生颠覆式影响的时间难以精确预测。目前的研究和观点表明:

  • 从一些观点来看,在接下来的几十年内,AI 就可能带来巨大变化。例如,在未来的几十年里,我们将能够做到在祖辈看来如同魔法般的事情。AI 会为人们提供解决难题的工具,帮助我们在人类进步的架构上增添新的支撑。
  • 预计到 2024 年及以后,生成式 AI 的热潮不会消退,会有团队投入大量资金训练大型模型,同时政府和大型科技公司将持续面临计算需求的压力。
  • 虽然目前 AI 对选举和就业的预期影响尚未完全显现,但未来其影响可能如同潘多拉魔盒,在未来的数年、数十年甚至更长时间内无处不在。

总之,AI 已经在我们的日常生活中存在,其对生活的颠覆式影响会逐步显现,但具体时间难以确定。

Content generated by AI large model, please carefully verify (powered by aily)

References

【法律法规】《促进创新的人工智能监管方法》.pdf

European country.Our world-leading status is down to our thriving research base and the pipeline ofA pro-innovation approach to AI regulationexpertise graduating through our universities,the ingenuity of our innovators and the government’slong-term commitment to invest in AI.To ensure we become an AI superpower,though,it is crucial that we do all we can to create the rightenvironment to harness the benefits of AI and remain at the forefront of technological developments.That includes getting regulation right so that innovators can thrive and the risks posed by AI can beaddressed.These risks could include anything from physical harm,an undermining of national security,as well asrisks to mental health.The development and deployment of AI can also present ethical challengeswhich do not always have clear answers.Unless we act,household consumers,public services andbusinesses will not trust the technology and will be nervous about adopting it.Unless we build publictrust,we will miss out on many of the benefits on offer.Indeed,the pace of change itself can be unsettling.Some fear a future in which AI replaces ordisplaces jobs,for example.Our white paper and our vision for a future AI-enabled country is one inwhich our ways of working are complemented by AI rather than disrupted by it.In the modern world,toomuch of our professional lives are taken up by monotonous tasks – inputting data,filling out paperwork,scanning through documents for one piece of information and so on.AI in the workplace has thepotential to free us up from these tasks,allowing us to spend more time doing the things we trained for– teachers with more time to teach,clinicians with more time to spend with patients,police officers withmore time on the beat rather than behind a desk – the list goes on.Indeed,since AI is already in our day-to-day lives,there are numerous examples that can help toillustrate the real,tangible benefits that AI can bring once any risks are mitigated.Streaming services

文章:Sam Altman|智能时代

In the next couple of decades,we will be able to do things that would have seemed like magic to our grandparents.This phenomenon is not new,but it will be newly accelerated.People have become dramatically more capable over time; we can already accomplish things now that our predecessors would have believed to be impossible.We are more capable not because of genetic change,but because we benefit from the infrastructure of society being way smarter and more capable than any one of us; in an important sense,society itself is a form of advanced intelligence.Our grandparents – and the generations that came before them – built and achieved great things.They contributed to the scaffolding of human progress that we all benefit from.AI will give people tools to solve hard problems and help us add new struts to that scaffolding that we couldn’t have figured out on our own.The story of progress will continue,and our children will be able to do things we can’t.It won’t happen all at once,but we’ll soon be able to work with AI that helps us accomplish much more than we ever could without AI; eventually we can each have a personal AI team,full of virtual experts in different areas,working together to create almost anything we can imagine.Our children will have virtual tutors who can provide personalized instruction in any subject,in any language,and at whatever pace they need.We can imagine similar ideas for better healthcare,the ability to create any kind of software someone can imagine,and much more.With these new abilities,we can have shared prosperity to a degree that seems unimaginable today; in the future,everyone’s lives can be better than anyone’s life is now.Prosperity alone doesn’t necessarily make people happy – there are plenty of miserable rich people – but it would meaningfully improve the lives of people around the world.

2024 年人工智能现状:辉煌、戏谑和“牛市”

更多资金,更多问题:预计明年会有团队花费超过10亿美元来训练单个大型模型。生成式AI的热潮不会消退,只会变得更加“奢华”。?计算压力的挑战:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。这就像一个健身网红的体重增长超过了突破了牛顿定理、超过了人类健身房的承重能力——总有一天,天花板可能会真的塌下来。?AI介入选举:虽然预期的AI对选举和就业的影响尚未成真,但这并不意味着我们可以掉以轻心。但请记住,AI的影响就像潘多拉魔盒:一旦打开,将会在接下来的几年里、几十年甚至百年亦或是人类此后的历史中都无处不在。而众所周知,诚如百年前的黑格尔所预言的那样,我们人类啊!从历史中获得唯一的教训就是……我们没有从历史中获得任何教训!?总而言之,言而总之,人工智能领域依然是一个充满惊喜、伦理挑战和很多真金白银的奇妙世界。在这个舞台上,OpenAI、Meta和来自东方的神秘力量等各方势力竞相角逐,2024年的AI领域更像是一场激动人心的UFC(无限制综合格斗冠军赛)比赛而非平静的学术研讨会。所以,请准备好你的爆米花和GPU吧——新的一年里,AI将继续突破界限、挑战极限,甚至可能重新定义一些我们熟悉的词汇!

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
智能驾驶未来三年会怎么发展
未来三年智能驾驶的发展可能呈现以下趋势: 安全性方面:L4 智能驾驶可能是第一个具身智能最大的应用场景,目前其安全性比人类高 10 倍。 技术应用方面:FSD 会带来新机会,将大模型带入无人驾驶。但接入物理世界会面临很多现实问题。 发展阶段方面:05 年处于信息智能阶段,510 年进入物理智能(具身智能)阶段。 应用普及方面:重 AI 的 AI 原生硬件会更大规模普及,关键转折点是找到使用上的刚需,如自动驾驶。但目前最重要的 AI 原生应用是自动驾驶。 能力提升方面:用多模态做感知,虽目前不如特斯拉的最先进技术,但三五年之后可能会汇合。
2024-12-03
分析AI颠覆性发展的生产策略调查的研究情况综述
以下是关于企业构建和购买生成式 AI 方式的 16 个变化的研究情况综述: 生成式人工智能在 2023 年迅速席卷消费市场,创下超过 10 亿美元的消费支出纪录。预计 2024 年企业领域的收入机会将数倍于消费市场。去年,企业对 genAI 的参与多局限于少数明显用例,且以“GPTwrapper(GPT 套壳)”产品作为新的 SKU 交付,一些人对其在企业中的扩展持怀疑态度。 然而,在过去几个月,a16Z 与数十家财富 500 强和顶级企业领导人交谈并对 70 多位进行调查后发现,过去 6 个月里,企业对生成式 AI 的资源配置和态度有显著变化。尽管仍有保留,但企业领导人几乎将预算增加两倍,更多应用部署在较小的开源模型上,并将更多业务从早期实验转移到生产环境中。 这对创始人是巨大机遇。a16Z 认为,为客户“以 AI 为中心的战略计划”构建解决方案,能预见痛点,从重服务模式转向构建可扩展产品的人工智能初创公司,将抓住新投资浪潮并占据重要市场份额。 任何时候,为企业构建和销售产品都需深入了解客户预算、关注点和路线图。a16Z 根据访谈结果总结了 16 个最为关键的考虑因素,涉及资源、模型和应用。
2025-04-15
ai将颠覆很多模式,那有什么是未来十年二十年不变的部分?
以下是关于您所提出问题的相关分析: 在未来十年二十年,可能存在一些相对不变的部分: 1. 创造力和想象力的重要性:在游戏创作等领域,尽管技术门槛降低,但独特的创意和想象力仍将是珍贵的。 2. 行业竞争的本质:在初创企业和现有大公司的竞争中,各自的优势和挑战依然存在,关键在于如何利用自身特点吸引用户和应对变革。 3. 科技对经济的推动作用:如 AI 这样的新技术仍将对全行业的进步产生积极影响,为经济发展提供新动力。 然而,需要注意的是,由于科技发展的不确定性,对于哪些部分绝对不变难以给出确切的定论。
2024-11-05
我想要自学AI相关的知识,但不知道从哪里开始,需要一个行动方案,我未来想做一个ai产品经理
以下是为您提供的自学 AI 知识并成为 AI 产品经理的行动方案: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 掌握相关技能: 了解目前 AI 提示词工程师岗位的招聘技能要求,例如: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 4. 了解产品经理工作: 调研市场、思考需求、转化需求、思考解决方案、设计解决方案、分配任务、进行测试、实现解决方案。 像善用提示词工程的人一样,将需求抽象再具象成产品。 总之,要成为 AI 产品经理,需要不断学习和实践,适应行业的发展和变化。
2025-04-12
MCP是什么?未来的发展趋势如何?
MCP(模型上下文协议)是一种于 2024 年 11 月推出的开放协议,允许系统以跨集成的泛化方式为 AI 模型提供上下文。该协议定义了 AI 模型如何调用外部工具、获取数据和与服务交互。 MCP 已经在重塑 AI 智能体和代理的生态系统。其未来的发展趋势取决于如何应对基础性挑战,如果处理得当,可能成为 AI 与工具交互的默认接口,并开启新一代自主、多模态、深度集成的 AI 体验。如果被广泛采用,它可能代表工具构建、消费和货币化方式的转变。 今年将是关键的一年,可能会面临一些关键问题,比如是否会看到一个统一的 MCP 市场崛起,AI 代理的认证是否会变得无缝,多步执行能否被正式纳入协议等。 MCP 从 LSP(语言服务器协议)中获取灵感,超越 LSP 的地方在于其以智能体为中心的执行模型,LSP 主要是被动响应,而 MCP 专门为支持自主的 AI 工作流而设计,根据上下文,AI 智能体可以决定使用哪些工具、按什么顺序以及如何将它们串在一起来完成任务。MCP 还引入了人工参与的功能,允许人类提供额外的数据并批准执行。
2025-04-10
未来ai发展有什么方向性的可能,尤其对于产品运营的启发
未来 AI 发展具有以下方向性的可能,对产品运营有如下启发: 1. 从通用能力到专业化细分: 早期通用型 AI 产品如 ChatGPT 吸引大量用户,但难以满足多样化需求。 如今越来越多 AI 产品专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具),每个细分领域的产品不断提升核心能力,为用户提供更精准和高质量服务。 2. 商业模式的探索与创新: ToB 市场深耕,如针对内容创作者的 ReadPo,为专业用户提供高效工具。 新型广告模式,如天宫搜索的“宝典彩页”,允许用户认领主题词实现变现。 AI 产品从技术展示向解决用户痛点和创造商业价值转变。 3. 公司未来的样貌: AI 是生产力革命,将通过 AI 网络协同工作,推动对新型基础设施的需求。 未来公司建设可能成为 AI Agent 的工作,公司可能像神经网络一样工作。 下一代公司规模可能更小,但数量会增加,具有新的组建方式、所有权和管理结构。 未来公司将需要解决知识管理、内容生成、信任、安全和身份验证等难题的企业产品,软件数量将不断扩张和变化,代码生成和软件代理业务将更定制化和快速迭代。 4. 具体应用场景: 企业应用:提示词工程重要性凸显,带来超级个性化服务、预测性决策能力、自动创新设计能力、自动识别和优化内部流程。 交通领域:自动驾驶汽车提高安全性和效率,优化信号灯和流量。 物流配送:优化路线和计划,降低成本,包括无人机送货。 教育:提供个性化学习体验。 农业:分析农田数据提高产量和质量。 人工智能时代下最重要的三个基石是数据、算法和算力,相关资源如: 算力: 数据:
2025-04-10
未来ai发展尤其对于腾讯的发展有什么方向性的可能
以下是关于腾讯在未来 AI 发展方向的一些可能: 1. 2024 年数字科技趋势:从连接、交互、计算和智能四个维度,对 100 多项未来技术和重点方向给出趋势性判断。包括星地直连的卫星互联网、垂直起降飞机的未来交通网、能源、信息和交通的多网协同,使未来网络连接的广度和深度都迎来无限可能。报告下载地址:(发布时间:2024/01/23) 2. 金融业大模型应用:强调大模型技术对金融业带来的革命性影响,包括提高效率、降低成本、创新服务和优化风险管理等方面。通过深入分析多个案例,展示大模型在金融服务、风险管理、客户服务和营销策略等领域的应用,同时指出实施大模型技术面临的挑战,如数据隐私、算法偏见和监管合规等。报告下载地址:(发布时间:2023/11/30) 3. 在基础模型和开源生态方面: 合成数据方面:量变不能直接产生质变,质量和结构至关重要;需要从扩充数据转向创造知识,通过系统化方法提升训练数据质量。 游戏开发、影视制作、工业设计、VR 构建等领域:面临数据积累和模型优化以实现产业赋能的挑战,当前瓶颈包括训练数据稀缺和泛化能力有限,未来方向可能是 GANs 数据生成和迁移学习优化。 材质还原方面:基于几何模型的空间结构特征生成真实感材质与纹理映射,纹理生成方法多元化,核心技术不断突破,AI 赋能加速发展,应用场景持续扩展。
2025-04-10
我想在未来从事ai事业,现在该如何学习ai,
如果您想在未来从事 AI 事业,以下是一些学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-26
未来AGI新职业有哪些
未来 AGI 可能催生以下新职业: 1. 与 AGI 技术安全和伦理相关的工作,如负责确保 AGI 可控性和与人类价值对齐的专业人员。 2. 参与公共政策制定和全球合作的“政策顾问”和“外交官”,协助制定 AGI 相关的规则和标准。 3. 由于 AGI 对劳动力市场的冲击,可能会出现帮助劳动者快速适应职业转换、学习新技能的职业培训师和指导顾问。 同时,AGI 的广泛应用将对劳动力市场产生巨大冲击,许多传统职业可能被取代,但历史经验表明,每次技术革命虽淘汰旧岗位,但也会创造全新岗位。例如汽车取代马车夫催生了汽车产业的新工作,AGI 时代也有望出现我们今日难以想象的新职业,整体上有望维持就业的动态平衡。不过在调整过渡期,许多劳动者将面临前所未有的职业转换压力,需要快速适应并学习新技能,转向机器不能完全胜任的任务。
2025-03-17