Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么入门A i

Answer

以下是为您提供的 AI 入门指南:

  1. 了解 AI 基本概念:
    • 建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
    • 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后进行分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

如果您希望继续精进,对于 AI 可以尝试了解以下作为基础的内容:

  1. AI 背景知识:
    • 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  2. 数学基础:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:基础的概率论知识,如条件概率、贝叶斯定理。
  3. 算法和模型:
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:简介强化学习的基本概念。
  4. 评估和调优:
    • 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学习如何使用网格搜索等技术优化模型参数。
  5. 神经网络基础:
    • 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
    • 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。

加入离谱村的方式: 加入的入口足够明显,大家起码扫一眼看一下 guide 就能知道。对于小白来说,不要觉得需要潜心学习 1 个月才好意思进来,其实敲门砖很简单,一个点子或者一张图即可。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

小白30min加入离谱村的流水账

加入的入口足够明显,大家起码扫一眼看一下guide就能知道。但是对于我这种AGI小白来说,看到大佬们的介绍和样例,觉得自己怎么的也得潜心学习1个月才好意思进来,然而,大错特错了!!来都来了,不要不好意思直接冲——其实敲门砖很简单:一个点子一张图

Others are asking
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
七天入门计划
以下是为您提供的七天入门 AI 的计划建议: 第一天: 开始接触李宏毅的生成式人工智能课程。 资源:在 B 站直接搜索《李宏毅 2024 春《生成式人工智能导论》。 第二天至第十四天: 抽空陆续花 2 周时间学完李宏毅的课程。 第五天: 研究并开始使用 Kimi。 参考资料: 。 抱着每天向 kimi 问 100 个问题的心态,调整自己的思考模式,在工作和生活中养成有问题问 AI 的习惯。您还可以参考公众号文章【每天问 Kimi 们 100 个问题,你就 AI 入门了】。 在学习过程中,建议做好笔记,总结所学知识和心得体会,以便更好地掌握和应用。
2025-04-13
给我提供一份清华大学104页的deepseek从入门到精通的手册的链接
以下是为您找到的与清华大学 DeepSeek 相关的一些资料链接: https://pan.quark.cn/s/56e2713e95f4 https://docs.qq.com/doc/DSG9SWFpjVXI3aHZ1 清华大学 104 页的 DeepSeek 从入门到精通的手册:https://waytoagi.feishu.cn/record/FjWorH (2 月 11 日更新附录)
2025-04-11
给我提供一份清华大学104页的deepseek从入门到精通的手册
以下是为您整合的相关信息: 清华大学出品了《DeepSeek:从入门到精通》的指南,该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等,并探讨了其使用方法,包括推理模型与通用模型的区别、提示语设计策略等,旨在帮助用户更好地掌握这一 AI 工具的使用,提升工作效率和创新能力。您可以通过以下链接获取:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg 。 此外,还有一些相关的更新和资料,如 2 月 11 日更新附录的清华大学 104 页 Deepseek 从入门到精通、1 月 21 日更新热门 AI deepseek 推荐及案例征稿通知、1 月 14 日更新爱好者交流 g 群和微信群、12 月 30 日更新案例 24,25,26 等。 同时还有关于 AI 赋能教学的课程实施流程及案例亮点等内容,如利用 AI 生成开放性问题引发深度思考、通过多维数据分析支持全面客观的判断、通过辩论提升批判性思维和表达能力等。
2025-04-11
入门:Ai绘画
以下是为您提供的 AI 绘画入门相关的资源和教程: 在“通往 AGI 之路介绍.pdf”中,有关于 AI 绘画入门的部分,包括产品工具与案例实战,开箱即用。 以下是一些 B 站的视频教程链接: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?: 还有 SD 新手从 0 入门的 AI 绘画教程,包括以下章节: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet! 您可以通过以上资源进行学习,祝您在 AI 绘画领域学有所成!
2025-04-10
AI入门
以下是为您提供的 AI 入门的相关指导: 一、Python + AI 入门 在深入学习 AI 时,编程可能会让您感到困难,尤其是对于不会代码的朋友。但别担心,这里有一份 20 分钟的简明入门指南,能帮助您更快掌握 Python 和 AI 的相互调用,并在接下来的 20 分钟内完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 关于 Python: Python 就像哆啦 A 梦,拥有装满各种道具的标准库,遇到问题时可直接使用。若标准库道具不够,还能通过 pip 一类的工具从 GitHub 一类的分享代码平台订购新道具。Python 在 AI 领域被广泛使用,遍地是大哥。 关于 OpenAI API: OpenAI 通过两种方式提供服务,一是通过 ChatGPT 提供开箱即用的服务,直接对话即可;二是通过 OpenAI API 提供更加灵活的服务,通过代码调用完成更多自动化任务。 二、JavaScript 的 AI 堆栈入门 尽管当前版本是一个很好的起点,但仍在逐步完善,路线图包括: 1. 交互式 CLI 用于 createaistack,开发人员可选择自己的项目脚手架和依赖项。 2. 用于高级用例的事务性数据库(例如,在问答中保留问题、用户偏好等)。 3. 更多的向量数据库和部署平台选项。 4. 用于开源模型的轻量级微调步骤。 同时,对在创建过程中发挥重要作用的开源项目表示感谢,如 Tailwind、ai sdk、dotenv、Next.js、langchain.js 等。 三、新手学习 AI 的方法 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可根据兴趣选择特定模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-04-10