AGI 的实现是一个复杂且尚未有明确路径的过程,以下是一些相关的观点和进展:
在生成式AI的下一个阶段,我们预计推理研发的成果将快速且深入地渗透到应用层。过去,很多认知架构依赖于巧妙的“解锁”技术;而随着这些能力逐渐深度嵌入到模型中,自主应用程序的复杂性和稳健性将会迅速提升。在研究实验室中,推理和推理时计算将继续成为未来的重要议题。随着新的扩展法则的出现,新的竞赛已经开始。但在特定领域中,获取真实世界的数据并构建领域和应用特定的认知架构仍然是一个巨大的挑战。这意味着,在解决现实世界中多样化问题时,“最后一公里”的应用提供商可能更具优势。展望未来,多代理系统,如Factory的“机器人”,可能会成为建模推理和社会学习过程的主流方式。一旦AI能够执行工作,我们将能组建团队,让“工人”完成更多任务。我们所期待的,是生成式AI的“第37步”时刻——就像AlphaGo在与李世石对战的第二局中出人意料的那一步棋。当一个通用AI系统展现出超越人类的思考和决策时,那一刻便会到来。这并不意味着AI将“觉醒”(AlphaGo并没有),而是AI在感知、推理和行动的模拟过程中,能够以全新的方式进行探索。这或许就是通用人工智能(AGI),但如果是这样,它并不会是单一的奇迹,而是技术发展的下一个阶段。
Midjourney提示词:body,low angle::1 Macro,3d,glass floating flat organic forms,shapeless,close-up ribbed plastic object,depth of field,pastel,rainbow colored border,in the style of ethereal light effects,monochromatic white figures,minimalist,shimmering metallics,light tan grey olive background::2 --v 6.0 --style raw --s 50 --ar 16:9[?查看更多风格和提示词](https://catjourney.life/)上周扎克伯格在他的threads和Ins上发布了一段视频,宣布Meta将会致力于实现AGI,为了实现这一目标公司正将其两大AI研究团队FAIR和GenAI进行合并,同时将投入超过90亿美元向英伟达采购员超过34000张H100显卡,到24年底Meta的GPU算力将达到60万个H100.今年英伟达总的H100出货量将有15万张,Meta一下就要拿走1/5真的狠。对于通用人工智能究竟是什么,以及何时能实现,连扎克伯格自己也没有明确的答案。尽管如此,他依然全力以赴地研究智能的各个方面,从逻辑推理到直觉判断。Meta正在开发名为Llama 3的大语言模型,目的是提升它在代码生成和逻辑推理方面的能力。重要的是扎克伯格正在推动一种开源的通用人工智能开发方式,这也是大家这么关注他的进展和Llama3的原因。三星上周发布了Galaxy S24系列手机,包括Galaxy S24、Galaxy S24+和Galaxy S24 Ultra。起售价分别为800美元、1,000美元和1,300美元。值得注意的是三星的新手机上附加了比较多的AI功能,并且将其作为了重要卖点。
至此,已经带领大家领略了一次最新的智能变革,从模型到应用,从智能代理到具身智能,从新工业革命到挑战科研。现在,我们来聊一下大家最关心也最为模糊的话题- AGI是什么?在我的理解中它会如何到来?Deepmind的研究团队在去年十一月发表过一篇论文《Levels of AGI》,他们给AGI的定义提出了六个原则,其中最重要的一点“关注能力,而非过程”,我们应该关注AGI能完成什么,而不是它如何完成任务。这意味着AGI系统不需要像人类一样思考或理解,也不需要具备意识或感知能力。另外,应该类似于自动驾驶的分级标准,AGI的定义应包括多个级别,每个级别都有明确的度量标准和基准。这种方法有助于更清晰地描述AGI的发展、评估风险和制定相应的政策。配图4.08:Six Levels of AGI(Table)有一个最常见,也是我认为比较合理和可验证的定义:AGI是一种自主系统,在大多数具有经济价值的工作中超越了人类的能力。这也是Sam Altman经常挂在嘴边说的,用自动化来贡献GDP。Andrej Karpathy今年初在他的博客上发过一篇名为《Self-driving as a case study for AGI》的文章,但不知道为什么很快就删除了,全文表达的意思就是用自动化的交通服务来类比AGI和它的经济价值。