Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

最新的开源的关于大语言模型的书有哪些?

Answer

以下是一些最新的开源的关于大语言模型的书籍和资源:

  • 《LLM 开源中文大语言模型及数据集集合》
  • 《AIGC Weekly #19》:包含了多篇相关文章,如腾讯的开源图像模型 Stable Diffusion 入门手册、马丁的关于 AIGC 的碎片化思考、多邻国创始人 Luis von Ahn 专访、Meta AI 发布的自监督学习 CookBook 等。
  • 《进阶:a16z 推荐进阶经典》
    • 《GPT-4 technical report》(2023 年):来自 OpenAI 的最新和最伟大的论文。
    • 《LLaMA:Open and efficient foundation language models》(2023 年):来自 Meta 的模型。
    • 《Alpaca:A strong,replicable instruction-following model》(2023 年):来自斯坦福大学的模型。
Content generated by AI large model, please carefully verify (powered by aily)

References

LLM开源中文大语言模型及数据集集合

Awesome Totally Open Chatgpt:地址:[https://github.com/nichtdax/awesome-totally-open-chatgpt](https://github.com/nichtdax/awesome-totally-open-chatgpt)简介:This repo record a list of totally open alternatives to ChatGPT.Awesome-LLM:地址:[https://github.com/Hannibal046/Awesome-LLM](https://github.com/Hannibal046/Awesome-LLM)简介:This repo is a curated list of papers about large language models,especially relating to ChatGPT.It also contains frameworks for LLM training,tools to deploy LLM,courses and tutorials about LLM and all publicly available LLM checkpoints and APIs.DecryptPrompt:地址:[https://github.com/DSXiangLi/DecryptPrompt](https://github.com/DSXiangLi/DecryptPrompt)简介:总结了Prompt&LLM论文,开源数据&模型,AIGC应用。Awesome Pretrained Chinese NLP Models:地址:[https://github.com/lonePatient/awesome-pretrained-chinese-nlp-models](https://github.com/lonePatient/awesome-pretrained-chinese-nlp-models)简介:收集了目前网上公开的一些高质量中文预训练模型。

AIGC Weekly #19

腾讯非常系统的Stable Diffusion介绍文章,量大管饱。使用入门指南包括硬件需求、安装Python和Git、装配模型,以及如何使用该模型进行图像生成。同时可以通过安装插件等个性化配置,对生成过程进行优化。[heading2][AIGC之我见-马丁的面包屑](https://whjlnspmd6.feishu.cn/wik[content]产品经理、独立开发者马丁整理的自己关于AIGC的一些碎片化思考,很多观点想的很清楚,非常值得一看。[heading2][多邻国创始人Luis von Ahn专访](https://www.newyorker.com/m[content]介绍了Luis von Ahn创建多邻国的过程和对AI的一些思考,特别是AI对教育的影响,他认为AI能以极低的成本产出匹配人类教师教学水平的内容,可以极大的促进教育平权。[heading2][自监督学习CookBook-Mate](https://ai.facebook.com/blog/[content]Meta AI发布了一本“自监督学习烹饪书”,为AI研究人员和从业者提供了使用SSL方法的实用指南。SSL是最近AI突破的关键因素之一,能够在多个领域推动深度学习的边界,从而使模型在自然语言(例如翻译和大语言模型)、音频(例如data2vec)以及计算机视觉模型等模态上实现灵活。本指南提供了一个SSL基础和其食谱,以易于研究人员使用的方式描述了方法的方法家族以及连接其目标的理论线程。研究人员可以使用此烹饪书来学习SSL的基本技术和词汇。[heading2][大语言模型发展历程](https://briefgpt.xyz/lm)[content][Rick Yu](https://twitter.com/cosmtrek)的论文工具增加了一个页面回顾了大语言模型的发展历程,介绍了历代先驱者的研究成果,从N-gram、神经语言模型到现在的GPT系列等。

进阶:a16z推荐进阶经典

[GPT-4 technical report](https://arxiv.org/abs/2303.08774)(2023年):来自OpenAI的最新和最伟大的论文,最为人所知的是它揭示的信息之少!([博客文章](https://openai.com/research/gpt-4))。[GPT-4系统卡片](https://cdn.openai.com/papers/gpt-4-system-card.pdf)揭示了OpenAI如何处理幻觉、隐私、安全性和其他问题。。[LLaMA:Open and efficient foundation language models](https://arxiv.org/abs/2302.13971)(2023):来自Meta的模型(几乎)开始了一个开源LLM革命。与许多最好的闭源模型竞争,但只对研究人员开放了有限制的许可。([博客文章](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/))[Alpaca:A strong,replicable instruction-following model](https://crfm.stanford.edu/2023/03/13/alpaca.html)(2023年):来自斯坦福大学的这种模型展示了指令调整的力量,特别是在较小的开源模型中,相比于纯粹的规模。

Others are asking
自动生成提示词的开源工具有哪些
以下是一些自动生成提示词的开源工具: 1. Freepik 推出的 Reimagine AI 工具:用户上传图片即可自动生成提示词,无需输入文字。它还能实时提供无限滚动结果展示,边操作边生成图像,通过调整提示词实时修改图片细节,并支持多种风格切换。相关链接:https://freepik.com/pikaso/reimagine 、https://x.com/imxiaohu/status/1770437135738581414?s=20 2. StreamMultiDiffusion 项目:使用区域文本提示实时生成图像,具有交互式操作体验,每个提示控制一个区域,实现精准图像生成。相关链接:https://arxiv.org/abs/2403.09055 、https://github.com/ironjr/StreamMultiDiffusion?tab=readmeovfile 、https://huggingface.co/spaces/ironjr/SemanticPalette 、https://x.com/imxiaohu/status/1770371036967850439?s=20 3. 【SD】自动写提示词脚本 One Button Prompt:可以在主菜单输入人物提示词,在“高级”中设置提示词混合,还具有一键运行放大的模块,包括完整的文生图放大和图生图放大,甚至可接入其他脚本和 controlnet。获取方式:添加公众号【白马与少年】,回复【SD】。
2025-04-12
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
开源AI Agent软件有哪些
以下是一些开源的 AI Agent 软件: 1. AutoGPT 和 BabyAGI:在去年 GPT4 刚发布时风靡全球科技圈,给出了让 LLM 自己做自动化多步骤推理的解题思路。 2. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具。 3. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 4. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 5. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 6. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 7. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,智谱·AI 开源的语言模型中也有与 Agent 相关的,如 AgentLM7B、AgentLM13B、AgentLM70B 等。
2025-03-29
mcp 有什么开源的方案吗
Anthropic 于 2024 年 11 月推出并开源了 MCP(模型上下文协议)。MCP 就像一个“转接头”或“通用插座”,能统一不同的外部服务,如 Google Drive、GitHub、Slack、本地文件系统等,通过标准化接口与大语言模型对接。开发者基于 MCP 规范开发一次“接口适配器”(MCP 服务器),就能让所有兼容 MCP 的模型(MCP 客户端)无缝接入,无需针对每个模型单独适配,大幅提升兼容性与开发效率。MCP 里面还包含 SSE(ServerSent Events),是一种允许服务器向浏览器推送实时更新的技术。MCP 像为 AI 模型量身定制的“USBC 接口”,可以标准化地连接 AI 系统与各类外部工具和数据源。与传统 API 相比,MCP 是单一协议,只要一次整合就能连接多个服务;具有动态发现功能,AI 模型能自动识别并使用可用的工具;支持双向通信,模型不仅能查询数据,还能主动触发操作。相关链接:
2025-03-27
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
现在Ai作图用什么?还是以前的Stable Diffusion吗?还是又出现了新的开源软件?
目前在 AI 作图领域,Stable Diffusion 仍然是常用的工具之一。Stable Diffusion 是 AI 绘画领域的核心模型,能够进行文生图和图生图等图像生成任务,其完全开源的特点使其能快速构建强大繁荣的上下游生态。 除了 Stable Diffusion,也出现了一些新的相关开源软件和工具,例如: :Stability AI 开源的 AI 图像生成平台。 :拥有超过 700 种经过测试的艺术风格,可快速搜索查找各类艺术家,并支持一键复制 Prompt。 同时,市面上主流的 AI 绘图软件还有 Midjourney,其优势是操作简单方便,创作内容丰富,但需要科学上网并且付费。如果您想尝试使用 Stable Diffusion,可以参考 B 站【秋葉 aaaki】这个 Up 主的视频了解具体的安装方法。
2025-03-24
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
你都融合了哪些大语言模型?
以下是一些融合的大语言模型: 1. LuotuoChineseLLM: 地址: 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。 2. Linly: 地址: 简介:提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 LinlyChatFlow 对话模型。 3. ChatYuan: 地址: 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 4. ChatRWKV: 地址: 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,NovelChnEng,NovelCh 与 NovelChnEngChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。 此外,还有以下相关信息: 1. 本地部署资讯问答机器人: Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. AIGC 落地应用大全中的案例: Poe(强烈推荐): 推荐指数:????? 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。 此外支持分享用户和模型的对话内容。但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户。 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。 midjourney prompt 扩写 Chatbot 能力很惊人。
2025-04-08
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
大语言模型能力排行榜
以下是一些大语言模型能力排行榜的相关信息: Open LLM Leaderboard: 地址: 简介:由HuggingFace组织的一个LLM评测榜单,目前已评估了较多主流的开源LLM模型。评估主要包括AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA四个数据集上的表现,主要以英文为主。 chinesellmbenchmark: 地址: 简介:中文大模型能力评测榜单,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b等开源大模型,多维度能力评测。不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 聊天机器人竞技场:由伯克利的一个团队管理,根据ELO评级对不同的语言模型进行排名,计算ELO的方式与国际象棋中的计算方式非常相似。 智源评测:豆包模型在其中表现出色,荣获大语言模型第一,视觉理解第二、文生图第二、文生视频第二,在匿名投票竞技场中排名第二,仅次于OpenAI。 地址:
2025-03-31
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31
最新的AI排行榜
以下是最新的 AI 排行榜相关信息: 3 月 9 日榜单: 文生图:Ideogram 2a(官方评价这是 Ideogram 迄今为止最快、最实惠的文生图模型) 文生视频:SkyReels、海螺01director、Pixverse4.0 图生视频:SkyReels、Pixverse4.0、Adobe Firefly 测评涵盖了 Midjourney,Flux,即梦,Recraft,ideogram,SD3.5,Sora,可灵,通义,即梦,海螺,pixverse,pika,vidu,luma 等 50+国内外热门模型,还有 Veo 2.0 等最新模型上线。本周最出乎意料的是最新上的模型 SkyReels,在文生视频和图生视频榜单都排名靠前。 生成式 AI 季度数据报告 2024 月 1 3 月: 赛道方面:天花板潜力为数亿美金;对标公司有 Xmind 等;总体趋势平稳增长,15.93%;月平均增速 34 万 PV/月;原生产品占比中等。 竞争方面:Top1 占比 32%;Top3 占比 82%;马太效应弱;网络效应中;大厂是否入局是,但大厂占比较低;技术门槛中。 23 年 12 月至 24 年 3 月月访问量排行榜及变化情况: 非大厂的 Top1 公司及产品:Whimsical Al,估值融资 3000 万$(2021),最新月 PV 为 237 万。2023 年 4 月,月访问量 382 万,Whimsical AI、gitmind AI 分别位列第一、第二的位置,月访问量合计占比 84%。2024 年 3 月,月访问量 812 万,Whimsical AI 整年看处于增长态势,仍位列第一,月访问量达到 237 万;ProcessOn 凭借其原有客户积累,月访问量快速增长,位列第二名,占比 25%。 记忆辅助榜单中,2023 年 4 月,月访问量为 83 万,Rewind AI 以 43 万的访问量位居第一,占赛道月总访问量的 52%。Personal.ai 和 Heyday 分别以 25 万和 8 万的访问量位列二、三,分别占赛道月总访问量的 30%和 10%。2024 年 3 月,月访问量增长至 245 万,rabbit inc.以 128 万的访问量跃居第一,占赛道月总访问量的 52%。Humane 和 Rewind AI 分别以 46 万和 22 万的访问量位列二、三,分别占赛道月总访问量的 19%和 9%。 相关网址: https://www.xiaohongshu.com/user/profile/65890e73000000003d035101?xsec_token=AB67OV1KW_ANCcrYRU_oRTJKJ9xLtexbMgyoJq68rxQA%3D&xsec_source=pc_search aiwatch.ai
2025-04-15
有哪些最新的ai技术可用在课堂教学上
以下是一些可应用在课堂教学上的最新 AI 技术: 1. 智慧技术助理:为教师提供辅助,帮助教师在课前、课中、课后呈现新的教学样态,驱动学生高效和差异化学习。 2. 生成式人工智能:可用于为教师减负,例如辅助设计教学内容、生成提示词等。 3. 个性化学习支持:通过 AI 技术实现对学生的个性化学习支持,如智能评估学生的学习情况,为每个学生提供定制化的学习方案。 4. 教育过程和结果的结构化表征:利用 AI 进行分析,帮助教师更好地了解学生的学习过程和结果。 5. 多维度数据采集与评价:AI 可以整合行为、情感、认知等多维度数据,为学生绘制发展全景图,实现更全面的教育评价。 需要注意的是,AI 在教育中是“助手”而非“替代”,教师应充分利用这些成熟的技术促进教育变革。
2025-04-13
ai在教学中的最新应用
以下是 AI 在教学中的一些最新应用: 1. MIT 为孩子开设免费的 AI 课程,涵盖了 AI 在跨学科领域的应用,如 AI 与气候、AI 与大学录取、AI 对美国大选的影响等。孩子们需要思考如何用气候数据写好故事、预测气候变换走向,从数据分析角度了解大学录取中的相关问题,以及识别 AI 深度伪造的新媒体材料等。 2. 张翼然提出用 AI 为教师减负,为有初步 AI 使用经验、渴望了解最新技术进展并交流的老师提供了相关技巧和分享。例如,在智慧技术助理加持下探索教学新样态,分享全球 AI 技术在教育界的新发展和应用案例。 3. 从 AI 助教到智慧学伴的应用探索中,提出调整教学理念,将 AI 作为教学辅助工具和合作伙伴。学习利用 AI 工具的优势应用于教学,如自动生成练习、个性化反馈等,同时确认输出质量。根据 AI 能力设计开放性作业,调整考核方式,继续发挥教师在提供情感支持、培养团队合作等方面的优势。
2025-04-11
最新的生命科学有关的 AI动向
以下是生命科学领域有关 AI 的最新动向: 在医疗健康生物制药方面,AI 技术极大地加速了研究,在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。例如,AI 提前三年诊断胰腺癌;两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因;AI 帮助抗衰老,筛查出高效的药物候选物;利用 AI 寻找阿尔兹海默症的治疗方法;通过神经网络分析患者体液中的生物标志物,早期诊断帕金森。 Nature Methods 主题特刊聚焦于 AI 在生物学中的应用,探讨了计算生物学多领域,强调高精度蛋白质结构预测成就,提及了 AI 在蛋白质组学数据分析中的应用、机器学习可解释性挑战,以及科研人员对 AI 工具培训的需求,同时探讨了 AI 与生物医学数据结合的新时代。 Flagship Pioneering 创始人 Noubar Afeyan 提出 AI for Science 的下一步是 MultiAgent,旨在实现类似自动驾驶的科研自动化,推动生命科学领域的革命性进展。
2025-04-10
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10
我想了解最新的ai的即时信息(最新资讯与ai工具)
以下是为您提供的最新 AI 即时信息和工具: 4 月 1 日 AI 资讯: 【AI 模型及应用】 OpenAI:将会开源一个推理模型,ChatGPT 即将推出推理强度控制选项,Gpt4o 生图能力面向免费用户。 Gemini 2.5 Pro:免费使用,任何人都可以使用 Canvas 进行编码和创作。 【AI 视频】 Higgsfield:发布 50 多个电影级摄影机动作预设,提升动态镜头表现力。 luma:为 Ray 2 引入摄像机运动概念,可基于预设镜头并组合编辑。 Remakes:支持基于用户上传图像直接编辑,并融合 Remade 视频特效,简化创意流程。 Meta:宣布推出 MoCha 系统,实现电影级说话角色合成效果。 【AI 3D】 HSMR:推出从单张图像重建人体 3D 骨骼和网格模型的系统。 krea:引入 AI 3D 生成能力,扩展其创意工具的功能范围。 PGC:推出基于物理的单一姿势高斯布料模拟技术,提升数字服装的真实感。 【AI 音频】 MiniMax Audio:发布全新 Speech02 语音模型,提升语音合成质量。 3 月 19 日 AI 资讯: 【AI 模型】 英伟达:发布全球首个开源人形机器人基础模型 Isaac GR00T N1 及相关 GTC 信息。 谷歌 Gemini:放出了两个功能 Canvas 和 Audio Overview。 【AI 视频】 STAbility AI:发布 Stable Virtual Camera,2D 图像转化 3D 视频。 Domo AI:推出“图片说话”功能,带口型匹配。 【AI 3D】 Roblox:推出 AI 3D 技术 Cube 3D。 Claude MCP Unity 版本推出。 【AI 音乐】 AI 音乐工具 Udio:推出 v1.5 Allegro。 LVAS Agent:基于多智能体协作的长视频音频合成。 获取 AI 资讯的渠道: 公众号:超时空视角、AI 替代人类。 小红书/抖音:EverAI。 B 站:Ever AI 酱(这里会有教程及 AI 工具界面操作)。 关于“通往 AGI 之路”知识库和社区平台: WaytoAGI(通往 AGI 之路)是一个致力于人工智能(AI)学习的中文知识库和社区平台。为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。 汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 社区定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了 AI 春晚、离谱村等大型共创项目。 在没有任何推广的情况下,WaytoAGI 一年时间已有超过 100 万用户和超千万次的访问量。 目前合作过的公司/产品包括阿里云,通义千问,淘宝,智谱,支付宝,豆包,火山引擎,marscode,coze,堆友,即梦,可灵,MiniMax 海螺 AI,阶跃星辰,百度,Kimi,吐司,liblib,华硕,美团,美的,360,伊利,魔搭,央视频,Civitai,Openart,Tripo3D,青椒云等。
2025-04-10