Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Open AI的发展史

Answer

OpenAI 的发展历程如下:

  • 2015 年成立。
  • 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。
  • 其发展可追溯到更早时期:
    • 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。
    • 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。
    • 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,人工智能一词被正式提出,并确立为一门学科。
    • 此后近 70 年,AI 发展起起落落。
    • OpenAI 成立一年多后,其首席技术官对细节描述吝啬,当时员工工资占支出大头,研究方向多样但成果有限。
    • OpenAI 的崛起始于聘请研究员 Alec Radford。

此外,OpenAI 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级:

  1. 聊天机器人(Chatbots):具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。
  2. 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。
  3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。
  4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。
  5. 组织(Organizations):最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

2022年11月30日,OpenAI发布基于GPT 3.5的ChatGPT,自此开始,一股AI浪潮席卷全球,但AI(人工智能,Artificial Intelligence)并不是近几年才有的新鲜事,他的起源,最早可以追溯到上世纪的1943年。1943年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。1956年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能Artificial Intelligence一词被正式提出,并做为一门学科被确立下来。此后接近70年的漫长时间里,AI的发展起起落落,两次掀起人类对AI毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。图1 AI发展史

OpenAI 真正想要什么 | WIRED

OpenAI成立一年多后,我在旧金山与Brockman共进午餐。作为一家名字中带有“Open”一词的公司的首席技术官,他对细节的描述相当吝啬。他确实肯定,这家非营利组织有能力在一段时间内动用最初的十亿美元捐款。25名员工的工资——他们的工资远低于市场价值——占了OpenAI支出的大头。他说:“我们的目标,也是我们真正在推动的事情,就是让系统能够完成人类以前无法完成的事情。”但目前看来,这只是一群研究人员在发表论文。采访结束后,我陪他去了公司位于使命区的新办公室,但他只允许我走到前厅。他倒是躲进衣柜里给我拿了件T恤。如果我当时进去打听一下,也许就能知道OpenAI究竟有多艰难。Brockman现在承认,“没有什么是行得通的。”它的研究人员把算法面条扔到天花板上,看看什么能粘住。他们钻研解决视频游戏的系统,并在机器人技术上花费了大量精力。Altman说:“我们知道我们想做什么。我们知道为什么要这么做。但我们不知道怎么做。”但他们相信。使用深度学习技术的人工神经网络不断改进,为他们的乐观情绪提供了支持。“总的想法是,不要对深度学习下注,”Sutskever说。他说,追逐人工智能“并非完全疯狂。它只是适度疯狂而已”。OpenAI的崛起之路真正始于它聘请了一位尚未被人熟知的研究员Alec Radford。2016年,Radford离开了他在宿舍里共同创办的波士顿一家小型AI公司,加入了OpenAI。在接受OpenAI的邀请后,他告诉他的高中校友杂志,担任这个新职位“有点类似于加入一个研究生项目”——一个研究AI的开放式、低压力的栖息地。他实际扮演的角色更像是Larry Page发明了PageRank。

问:AGI 的 5 个等级是什么?

OpenAI在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级。OpenAI自2015年成立以来,一直将AGI作为其战略目标之一,随着ChatGPT、多模态大模型和AI Agent等技术的发展,我们似乎越来越接近实现这一目标。AGI的五个等级分别为:1.聊天机器人(Chatbots):具备基本对话能力的AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。2.推理者(Reasoners):具备人类推理水平的AI,能够解决复杂问题,如ChatGPT,能够根据上下文和文件提供详细分析和意见。3.智能体(Agents):不仅具备推理能力,还能执行全自动化业务的AI。目前许多AI Agent产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。4.创新者(Innovators):能够协助人类完成新发明的AI,如谷歌DeepMind的AlphaFold模型,可以预测蛋白质结构,加速科学研究和新药发现。5.组织(Organizations):最高级别的AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
OpenManus
以下是关于 OpenManus 的相关信息: 比赛说明: 赛道一 OpenManus 效果 规则:自由修改代码,复现 Manus 原版某一方面的效果,可参考 12 个精选 Case。可以选择优化某类任务下执行的效果、优化前端页面或复刻宣传效果等,方向不限。 规模:队伍规模在 1 3 人之间。 评判:由组委会评委与大众人气投票热度评分,比例 8:2。 奖项:一、二、三等奖。 赛道二 OpenManus 创意 规则:自由修改代码,通过任何手段或工具,使用 OpenManus 得到有趣效果,完成有趣任务。 规模:队伍规模在 1 3 人之间。 评选规则:由组委会评委与大众人气投票热度评分,比例 2:8。 奖项:一、二等奖。 时间表: 线上启动:2025 年 3 月 21 日,线上启动会。 报名时间:3 月 20 日 3 月 28 日。 比赛阶段:3 月 21 日 4 月 3 日。 提交截止:4 月 3 日 23:59。 人气评审阶段:4 月 4 日 4 月 8 日 23:59,作品线上展示,大众投票。 结果公布&颁奖:4 月 10 日。 趋势研究: Manus 注重实用性和用户体验,目前虽为内测阶段但已计划开源部分模型以构建生态影响力。受其启发,开源社区涌现了如 OpenManus、OWL 等快速复刻的项目。多智能体的协作机制成为业界热点,通过让不同专长的 Agent 各司其职、相互通信,一个 AI 系统可以具备更大的灵活性和扩展性。例如,复杂业务流程中的不同环节可由不同 Agent 完成,再由调度 Agent 统筹协调。这种架构在一定程度上模拟了人类团队协作的问题求解方式,被认为是迈向更通用智能的重要路径。Anthropic 也在其 Agent 研发中引入类似理念,区分“Workflow”(固定流程)和“Agent”(自主决策流程)的概念,指出当任务复杂度和不确定性较高时,应让 LLM 自行规划调用工具,而非预设流水线。总之,多 Agent 系统通过模块化分工+自主协调,提升了大型任务的可管理性和成功率,已成为 2025 年 Agent 系统设计的主流思路之一。 开发进展: 距离 OpenManus 开源第一天已过去 12 天,收获了大量关注和 37k stars。在此期间不断完善和优化,包括修复已知 bug、兼容不同 LLM 调用方式、优化基础 Manus 的各类工具等,现已迭代完成基础稳定版的开发,并举办了 OpenManus Hackathon 比赛,邀请充满好奇心的小伙伴参加,展示创造力和想象力。
2025-04-11
OpenAI Operator, Anthropic Claude Coder
以下是关于 OpenAI Operator 和 Anthropic Claude Coder 的相关信息: 2025 年 Agent 领域的发展预测: 从对话助手到行动型智能体是 2025 年 Agent 技术的主流发展方向之一。计算机操作能力取得突破,传统大模型更多充当聊天助手,而 2025 年的突破在于让 Agent 直接“动手”操作电脑和网络环境。 Anthropic 在 2024 年底发布的 Claude 3.5 Sonnet 首次引入“Computer Use”能力,让 AI 像人一样通过视觉感知屏幕并操作鼠标键盘,实现了 AI 自主使用电脑的雏形。 OpenAI 在同期推出了代号“Operator”的 Agent 及其核心模型“计算机使用智能体”(CUA),使 GPT4 获得直接与图形界面交互的能力。CUA 通过强化学习将 GPT4 的视觉能力与高级推理相结合,训练 AI 可像人一样点击按钮、填表、滚动页面等。在 OpenAI 的测试中,CUA 在浏览器任务基准 WebArena 和 WebVoyager 上分别达到 38.1%和 87%的成功率,后者已接近人类水平。 其他相关信息: 宝玉日报 1 月 25 日: Deepseek 提示词框架包含四大模块:任务目的(Purpose)、计划规则(Planning Rules)、格式规则(Format Rules)、输出说明(Output)。 Anthropic 的 Claude 可通过屏幕截图获取计算机视觉信息,计算光标移动的像素坐标,并执行点击、滚动等操作。 OpenAI Operator 利用虚拟主机和 Chrome 浏览器,通过 CUA 实现网页实时操作,支持复杂任务导航。 主要的大语言模型: OpenAI 系统包括 3.5 和 4 等,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型在春季首次发布,功能更强大。新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。未为 OpenAI 付费只能使用 3.5。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,连接到互联网。 谷歌一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是 PaLM 2 模型。 Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-04-01
openai官方文档
以下是关于 OpenAI 官方文档的相关信息: 对于刚入门学习提示词的朋友,建议先有一个大模型帐号并熟悉与之对话的方式。推荐的国产平替有 。 学习 prompt 必须看 OpenAI 的官方文档,相关链接有: 。 在 OpenAI 官方的说明文档(Documentation)中,为用户提供了若干项策略以帮助更好地使用 ChatGPT。例如策略一:编写清晰的说明,即在询问中包含详细信息以获得更多相关答复。因为大模型无法在有限信息中“猜测”用户意图,所以提问时不要惜字如金,多说一些内容、多提供一些信息能有效提高回复的质量和丰富性。文中还列举了多个例子进行说明。
2025-03-29
@ 在cherry studio可以是你openrouter的API吗?
在 Cherry Studio 中,不能直接将 @ 作为 OpenRouter 的 API。OpenRouter 有一些特定的使用方式和条件。 例如,Zeabur 模版自带 oneapi,支持一键部署。但想要同时使用 openrouter 和 simpleoneapi 需安装 cline 插件,将 openrouter api 放到 cline,再把 Cursor 设置换成 simpleoneapi,这样基本能在 Cursor 里使用全系大模型。 OpenRouter 新发布了 BYOK(Bring Your Own API Keys)功能,这是个第三方 Key 集成功能,能将 xAI、OpenAI、Mistral 等数十个平台的 Key 集中在一起,还能同时使用其他平台和 OpenRouter 的额度。目前支持白“赚”的平台包括 AI Studio/Cohere/DeepSeek/Mistral/SambaNova/Together/xAI 等。 在使用 OpenRouter 集成 API Key 时,不仅能整合免费额度,还能解放更多槽位。但在 Cursor 的设置里,deepseek 会与 gpt 的配置发生冲突,同一时间最多只能使用 4 个类型的模型。 如果觉得 OpenRouter 支持的模型不够,还可以使用 simpleoneapi。不过 simpleoneapi 不像 openrouter 支持直接在线配置多个 Key,熟悉代码的可以通过本地或者 Docker 启动。 另外,在进行相关实验时,需要准备本地安装好的 VS Code,在 VS Code 中安装 Cline(MCP 客户端之一),还需要注册 Cloudflare 和 Openrouter,在 Openrouter 注册后在 Keys 中申请一个 API key 并妥善保存。
2025-03-24
OpenAI o1、Claude Sonnet 3.7、Gemini 2.0 pro 哪个 AI 搜索能力更强?
OpenAI o1、Claude Sonnet 3.7 和 Gemini 2.0 pro 在不同方面具有各自的优势,难以简单地比较哪个的搜索能力更强。 OpenAI o1 推理能力强,适合作为架构师或算法顾问。 Claude Sonnet 3.7 擅长长上下文任务,在快速生成代码与网页设计方面表现出色。 Gemini 2.0 pro 长上下文支持较好(2M Tokens),适合代码反编译与混淆代码分析。 具体的搜索能力表现还会受到应用场景和具体任务的影响。
2025-03-21
openmanus
以下是为您整合的相关内容: 2025 年 3 月 7 日的通用智能体 Manus/Flowith/OpenAI Deep Research/OWL/openManus 案例和测评:AJ 组织会议邀请大家测评交流。李浩文分享用 Manus 优化工作流的案例,Manus 给出的方案与他想法高度吻合,涵盖模型、Lora、control net 等方面,效果惊艳,但部分参数需自行测试。他还展示新工作流效果,分享交流方式,AJ 期待其开源,随后准备邀请陈然介绍案例。宁晨然分享多个 AI 使用案例,包括让 AI 调研奥斯卡趋势图,处理财报数据任务表现出色,但做 Web SOCKET 代码任务出现 Badcase。还提到 AI 交互性好,可随时中断聊天,且能拒绝不合理请求。最后 AJ 表示会请 camera AI 的国豪老师分享,还谈及皮皮老师抢到码的趣事。赵悦分享与 Manus 交互案例及探讨优化,即将迎来国豪老师团队分享。 Suno 音乐风格字典中的 STYLE TAGs(风格标签)O 部分:Obedient 顺从的、Objective 客观的、Obliging 乐于助人的、Obscure 模糊的、Observant 注意的、Obsessed 着迷的、Obsessional 痴迷的、Obsolete 过时的、Obstinate 固执的、Obtuse 迟钝的、Obvious 明显的、Occasional 偶尔的、Occupational 职业的、Oceanic 海洋的、Odd 奇怪的、Offbeat 不寻常的、Official 官方的、Oily 油腻的、Ominous 不祥的、Omnipotent 全能的、Omniscient 无所不知的、Onpoint 中肯的、Ongoing 进行中的、Onset 开始、Open 开放的、Openended 开放式的、Operatic 歌剧的、Opportune 适时的、Opposite 相反的、Optimal 最佳的、Optimistic 乐观的、Optional 可选的、Opulent 富丽堂皇的、Oracular 神谕的、Orbital 轨道的、Orchestrated 精心策划的、Orderly 井然有序的、Organic 有机的、Organizational 组织的、Oriented 定向的、Original 原始的、Ornamental 装饰性的、Oscillating 摆动的、Otherworldly 超凡脱俗的、Outgoing 外向的、Outlandish 奇异的、Outlined 简要说明的、Outrageous 可恶的、Outstanding 杰出的、Oval 椭圆形的、Overarching 涵盖一切的、Overdriven 过度推动的、Overflowing 满溢的、Overjoyed 非常高兴的、Overlapping 重叠的、Overloaded 过载的、Overlooked 被忽视的、Overpowering 压倒性的、Overwhelming 压倒性的。 3 月 5 日的 XiaoHu.AI 日报:OpenAI 计划推出三种不同级别的 AI 代理服务,针对不同用户群体和需求,分别为 2000 美元/月面向“高收入知识工作者”的代理,适用于一般知识型任务;10000 美元/月面向软件开发的代理,能够自动化编码工作;20000 美元/月具备“博士级”研究能力的顶级代理,可执行复杂的分析和研究任务。这一定价远超 ChatGPT Plus 订阅(20 美元/月)或 ChatGPT Team(25 美元/月),显示 OpenAI 对其 AI 代理能力的高度自信。此外,OpenAI 预计这些代理产品未来可能占公司收入的 20 25%。Manus 不仅可以解答问题,还能自动分析并执行任务,直接交付最终结果。
2025-03-15
AI的发展史
AI(人工智能)的发展历程如下: 1. 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科确立下来。 2. 发展阶段: 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 3. 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 在过去的几十年里,AI 的发展起起落落,经历了多次热度的起伏。如今,生成式 AI 等新技术的出现引发了新的关注和探索。
2025-04-08
AI发展史
AI(人工智能)的发展历程如下: 1. 起源阶段(1943 年):心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950 年:计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年:在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,人工智能一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落。 AI 技术发展历程还包括: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:视觉 语言模型如 CLIP、Stable Diffusion,以及多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释 AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子 AI:量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2025-03-31
AI发展史
AI(人工智能)的发展历程如下: 1. 起源阶段(1943 年):心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950 年:计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年:在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,人工智能一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落。 AI 技术发展历程还包括: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:视觉 语言模型如 CLIP、Stable Diffusion,以及多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释 AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子 AI:量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2025-03-12
总结最近AI的发展史,介绍一下各个AI的情况
AI 的发展历程如下: 1950s 1960s 早期阶段:出现专家系统、博弈论、机器学习初步理论。 1970s 1980s 知识驱动时期:有专家系统、知识表示、自动推理。 1990s 2000s 统计学习时期:机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 2010s 至今深度学习时期:深度神经网络、卷积神经网络、循环神经网络等兴起。 重大突破包括: 1956 年,人工智能被提出。 1997 年,深蓝在国际象棋比赛中击败卡斯帕罗夫。 2016 年,AlphaGo 在围棋比赛中战胜李世石。 2020 年,GPT3 发布,擅长用电脑写文章等语言相关任务。 2022 年,DALLE 发布,可根据描述画出想象中的图画。 2023 年,GPT4 发布。 从图灵测试开始,科学家们努力让机器更聪明。如今,AI 已在多个领域取得显著成果,如视频生成、蛋白质研究等,大模型由数据、算法、算力构成,算法不断迭代,数据质量至关重要。当前前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。而且,技术的变革越来越快,新的 AI 应用不断涌现。
2025-03-10
AI发展史
AI(人工智能)的发展历程如下: 1. 起源阶段(1943 年):心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950 年:计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年:在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落。 AI 技术发展历程可分为以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2025-03-10
AI发展史
AI(人工智能)的发展历程如下: 1. 起源阶段(1943年):心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950年:计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956年:在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,人工智能一词被正式提出,并作为一门学科确立下来。 此后近70年,AI的发展起起落落。 AI技术发展历程还包括: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前AI前沿技术点有: 1. 大模型:如GPT、PaLM等。 2. 多模态AI:视觉语言模型如CLIP、Stable Diffusion,以及多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子AI:量子机器学习、量子神经网络等。 8. AI芯片和硬件加速。
2025-02-26