Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能的三个技术派别

Answer

人工智能主要有以下三个技术派别:

  1. 符号主义:通过符号和逻辑推理来实现智能。
  2. 联结主义:基于神经网络和深度学习等方法,强调神经元之间的连接和信息传递。
  3. 行为主义:注重智能体与环境的交互和行为表现。

自 1956 年“人工智能”的概念在美国的达特茅斯学会上被提出后,其所涵盖的理论范围及技术方法不断扩展,如今已发展出多个技术分支并应用于不同领域。欧盟对人工智能的定义也在不断变化和发展,例如 2021 年《AI 法案》提案对人工智能的定义采取了更宽泛的界定标准,而 2022 年《AI 法案》妥协版本中,欧盟理事会及欧洲议会认为“AI 系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。

Content generated by AI large model, please carefully verify (powered by aily)

References

【非官方解读】全球人工智能治理大变局之欧盟人工智能治理 监管框架评述及启示

[heading4](1)人工智能目前人们对人工智能的定义并不统一。欧盟广泛使用的人工智能定义来自《2018年人工智能战略》,该战略指出:“人工智能(AI)是指通过分析环境并采取行动(具有一定程度的自主性)以实现特定目标来展示其智能行为的系统。基于人工智能的系统可以完全依赖于软件,在虚拟世界中运行(例如语音助手、图像分析软件、搜索引擎、语音和人脸识别系统)或者也可以嵌入硬件设备中(例如高级机器人、自动驾驶汽车、无人机或物联网应用程序)。”[4]郭佳楠:《欧盟人工智能的政策、伦理准则及规制路径研究》,载《互联网天地》,2023年第1期第26-32页。2021年《AI法案》提案第3条对人工智能的定义为:“AI系统指采用附录1中所列的一种或多种技术和方法开发的软件,该软件能生成影响交互环境的输出(如内容、预测、建议或决策),以实现人为指定的特定目标。”其中,附录1列举的技术方法主要包括:机器学习方法(包括监督、无监督、强化和深度学习);基于逻辑和知识的方法(包括知识表示、归纳编程、知识库、影响和演绎引擎、符号推理和专家系统);统计方法,贝叶斯估计,以及搜索和优化方法。事实上,“人工智能”的概念自1956年于美国的达特茅斯学会上被提出后,其所涵盖的理论范围及技术方法随着时代的发展也在不断扩展。如今,人工智能技术也发展出多个技术分支,应用于不同的领域中。相比于《2018年人工智能战略》,2021年《AI法案》提案对于人工智能的定义采取更加宽泛的界定标准。值得注意的是,在2022年《AI法案》妥协版本中,欧盟理事会及欧洲议会对于上述界定的观点有进一步意见,其认为“AI系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。

AI-Agent系列(一):智能体起源探究

正如在艺术界有印象派、立体派、抽象派一样,人工智能这个充满创意的领域也孕育出了自己的三大艺术流派:符号主义、联结主义和行为主义。这三大门派在人工智能的漫长岁月里,你方唱罢我登场,相互借鉴,共同成长。

AI-Agent系列(一):智能体起源探究

正如在艺术界有印象派、立体派、抽象派一样,人工智能这个充满创意的领域也孕育出了自己的三大艺术流派:符号主义、联结主义和行为主义。这三大门派在人工智能的漫长岁月里,你方唱罢我登场,相互借鉴,共同成长。

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
阶跃星辰、通义千问、Gemini三个视频理解模型哪个收费更便宜
以下是阶跃星辰、通义千问、Gemini 三个视频理解模型的收费情况: 阶跃星辰:输入价格为 0.005~0.015 元/千 tokens,输出价格为 0.02~0.07 元/千 tokens。 通义千问:Qwenvlplus 模型调用价格为 0.008 元/千 tokens,训练价格为 0.03 元/千 tokens。 Gemini 未提及收费信息。 综上,从已有的信息来看,通义千问的收费相对可能更便宜,但具体还需根据您的使用情况和需求来判断。
2025-04-10
AGI三个字母分别代表什么
AGI 指通用人工智能(Artificial General Intelligence)。在相关讨论中,部分人认为大语言模型(LLM)具有 AGI 潜力,但也有人如 LeCun 表示反对。在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。
2025-03-30
基于你的回答,对刚才所提到的三个部分再次展开详细叙述,要求每个部分的叙述字数不少于1000字
以下是对您提供的三个部分的详细叙述: 一、陶力文律师:拘灵遣将|不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事 在这部分内容中,重点强调了律师在运用 AI 时写好提示词的重要性以及相关的写作技巧和方法。 首先,结构化内容组织至关重要。通过使用编号、子标题和列表等方式,能够使文章的逻辑更加清晰,便于读者快速把握重点和理解内容。例如,在阐述具体的法律条款和案例分析时,可以将相关要点有条理地罗列出来,增强文章的可读性。 其次,规定概述内容解读结语的结构能够使文章围绕主题展开,有始有终。在开始时对相关规定进行简要概括,让读者对整体框架有初步了解;然后对具体内容进行深入解读,帮助读者理解规定的内涵和适用范围;最后以结语总结,强调重点或提出展望。 再者,案例和挑战的结合能够使文章更具说服力和实用性。通过引入实际案例,能够让抽象的法律规定和理论变得具体可感,读者可以更直观地理解其在实际操作中的应用。同时,分析潜在挑战并提供解决方案,能够帮助律师在面对复杂情况时做出更明智的决策。 此外,结合法规和实际操作也是必不可少的。法规为律师的工作提供了依据和准则,而实际操作案例则展示了法规在具体情境中的应用。通过两者的结合,能够为律师提供全面、准确的指导,使其在运用 AI 时更加得心应手。 最后,商业术语的使用能够体现文章的专业性和针对性。在餐饮行业相关的法律写作中,运用特定的商业术语,能够准确传达信息,避免歧义,使文章更符合行业特点和需求。 二、AI 梦:一丹一世界(下)2025 年 2 月 8 日副本 这部分内容主要围绕摄影构图和色彩在 AI 绘画中的应用展开。 在摄影构图方面,三角形构图法以其独特的稳定性能够让画面更加平衡美观。一张照片可以同时满足多种构图法,且构图并非一定要严谨,关键是要能够突出主体、叙事并留白,避免画面杂乱。同时,中国化美学构图具有极简且丰富、主次分明的特点,虽然欣赏门槛低,但掌握运用起来有一定难度。重复构图作为一种强大的视觉工具,能够增强信息的传递。 在色彩方面,色彩在 AI 绘画中具有重要地位,是拉开作品差距的关键因素。色彩部分涵盖了色彩心理学、色环、配色方案等内容。色彩心理学表明颜色能够影响人的情绪,在市场营销等多个领域都有着重要作用。例如,年度流行色会影响相关的营销活动。不同的颜色如红、黄、蓝等能够表现出多种不同甚至相反的情绪。 三、AI 梦:一丹一世界(下)2025 年 2 月 8 日副本 此部分主要涉及 AI 炼丹直播共学课的相关内容。 会议开场简单介绍了会议的背景和基本情况。 在直播共学课的介绍中,提到了课程由未推 AGI 麦乐园和摩哒社区共同举办,教授使用 Lora 或 AI 生图软件生图,并回顾了首节课内容及回放渠道。同时,讲解了 AI 梦一单一世界比赛的要求,包括使用特定平台和底模训练 Lora,提交六张以上含多样画面的作品等。 在作图创作思路方面,分为三步:第一步确定主题,可依据 Lora 风格或通过制造反差来确定方向;第二步确定主体,如人、动物、建筑等,并进行角色设定的联想;第三步增添叙事感,通过设置有反差、反逻辑的画面和多个元素,避免画面单调无趣。 在图片创作思路之后,还探讨了图片构成因素中的构图。
2025-03-25
我想要生成一张海报图,主题是妇女节,画面中需要有两三个年轻女性在食用阿胶产品,该怎么提问
如果您想要生成一张以妇女节为主题,包含两三个年轻女性在食用阿胶产品的海报图,您可以这样向 AI 提问:“请为我生成一张以妇女节为背景,画面中有两到三个年轻女性正在愉快地食用阿胶产品的海报,海报要色彩鲜艳、温馨,突出女性的美丽和活力。”
2025-03-04
目前在TO C场景中,AI在哪前三个场景中应用最为广泛
在 To C 场景中,AI 应用较为广泛的前三个场景包括: 1. 角色扮演类产品:如“猫箱”“剧本戏”“名人朋友圈”等,在 LLM 基础上通过添加特定角色定义实现。 2. 陪伴类产品:以“星野”“Talkie”“BubblePal”等为代表,在 LLM 基础上对长短记忆进行处理,突出陪伴意义,随着时间积累知识库,使 AI 更懂用户。 3. 搜索工具类产品:像“秘塔”“360 搜索”等,本质上是 RAG 方案,部分产品会对搜索内容结构化,形成图谱或脑图。
2025-01-25
在个人赚钱方面,AGI最常用的三个方面
在个人赚钱方面,AGI 较为常用的三个方面包括: 1. 合成数据:通过生产数据喂给 AI 模型以提高效果。传统做数据的核心竞争力在于获取他人无法拿到的数据以及低成本进行大量数据清洗和标注,新兴的是用 AI 来生成数据再喂给其他 AI。 2. 模型市场/平台:如当前热门的 HuggingFace(HF),提供模型市场服务。在 AI Agent 出现时,模型之间的互相调用可能会用到此类服务和规则。 3. 开发 AI 代理:例如 AutoGPT GUI、MULTI·ON plugin by MULTI·ON、BabyBeeAGI、MiniAGI 等,可实现自动执行任务等功能,具有一定的商业价值。
2024-12-12
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14