Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Ai产业

Answer

AI 产业应用广泛,涵盖以下领域:

  1. 医疗保健:
    • 医学影像分析:辅助诊断疾病。
    • 药物研发:加速研发过程。
    • 个性化医疗:提供个性化治疗方案。
    • 机器人辅助手术:提高手术精度和安全性。
  2. 金融服务:
    • 风控和反欺诈:降低金融机构风险。
    • 信用评估:帮助做出贷款决策。
    • 投资分析:辅助投资者决策。
    • 客户服务:提供 24/7 服务。
  3. 零售和电子商务:
    • 产品推荐:根据客户数据推荐产品。
    • 搜索和个性化:提供个性化购物体验。
    • 动态定价:根据市场需求调整价格。
    • 聊天机器人:回答客户问题。
  4. 制造业:
    • 预测性维护:避免机器故障停机。
    • 质量控制:检测产品缺陷。
    • 供应链管理:优化供应链。
    • 机器人自动化:提高生产效率。

AI 产业链中的机会分析如下:

  1. 基础设施层:布局投入确定性强,但资金投入大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”的切入机会。
  2. 技术层:技术迭代迅速,团队规模不大时需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。
  3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用少,普通个体和小团队推荐重点布局,发展空间巨大。

此外,AI 正在使生物制药和医疗保健产业化,应用于从药物设计、诊断到医疗保健交付和后勤功能等各个方面。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

走入AI的世界

我们来简要概括说说这张图中每一层的商机洞察(以下内容仅代表个人观点,供参考):1.目前来看,基础设施层布局投入的确定性最强,以发展的眼光看,当前算力缺口巨大,但这部分涉及到海量的资金投入,入行资源门槛较高,作为关键的基础设施,国内未来更多的将会由“国家队”扛起重任。普通人如果没有强资源需谨慎入局,因为很可能你无法快速对接到客户资源,等不到赚钱就现金流断裂,可以更多的考虑“合作生态”的切入机会。2.技术层当前仍然处于技术爆炸时刻,相关技术的迭代速度可以夸张点用“日新时异”来形容,迭代进步飞速,如果你或你的团队规模不大,但又有志于做这一层相关的事情,须慎重考虑“技术迭代风险”的问题(例如基于某种开源模型更进一步训练垂直领域模型,很可能等你训练出来的时候,更强更新的开源模型已经发布,让你的工作意义大打折扣),至于基础的通用大模型,非巨无霸公司就不是很建议考虑了,搞基础大模型的研发是一件十分烧钱的事情,且众多互联网大厂,AI独角兽,知名高校都已悉数下场神仙打架,完成了布局,开启了“百模大战”,但竞争的终局,只会有少数赢家。应用界不需要那么多同质化的大模型,最后多半是赢家通吃的局面。3.应用层是一片时代赋予我们的广阔蓝海,尽管2024年这个方向的从业者在飞速增加,也涌现出一批做垂直产业/行业/细分领域垂直模型或大模型应用的产品,但坦诚的讲,以我们自身的深度实践和用户的切实需求来看,当前针对行业/细分领域的成熟应用产品并不多,让人哇塞的“杀手级”应用更是凤毛麟角。对于普通个体和小团队,强烈推荐重点思考和布局应用层,这一层拥有超级机会和巨大发展空间。

新工业革命:生物技术×人工智能

我们今天正站在这个转折点上。直到现在,医疗保健和生物技术仍然大量依赖服务——由受过专业培训的科学家和[医生](https://a16z.com/2019/06/13/ai-doctor-deep-medicine-topol/)提供——这些服务是算法无法替代的,更不用说为公司增加足够的价值来采纳它们了。但现在,我们正处于一个革命的起点,[AI正在](https://a16z.com/2019/11/19/ai-industrializing-discovery-biology-healthcare/)工业化生物制药和医疗保健,它被应用于从[药物设计](https://a16z.com/2020/05/26/investing-insitro/)和[诊断](https://a16z.com/2017/03/01/going-deeper-into-freenome/)到[医疗保健交付](https://a16z.com/2021/07/12/investing-in-bayesian-health/)和[后勤功能](https://a16z.com/2021/02/09/administration-healthcare-back-office-innovation/)的各个方面。(关于在生物学中应用AI的讨论经常出现的问题或挑战,我在[此处](https://a16z.com/2018/02/28/black-box-problem-ai-healthcare/)解决了医疗保健中AI的“黑箱”问题;并在[此处](https://a16z.com/2021/06/15/ai-is-too-dumb-for-now-2/)解决了我们获取智能[与“愚蠢”]AI的需求问题。)[heading4]但现在,我们正处于一个革命的起点,AI正在使生物制药和医疗保健产业化,并且它被应用到从药物设计和诊

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13
我希望了解人工智能大模型公司的整体产业情况
以下是关于人工智能大模型公司的整体产业情况: 2024 年被称为国内大模型落地元年,经过一年时间的发展,呈现出以下特点: 1. 竞争格局:国内大模型行业基本形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争态势。 2. 落地增长:2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长。中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 3. 厂商表现:百度在中标数量和金额方面排名所有厂商之首,科大讯飞居第二。在金融行业,百度也排名第一。 4. 行业应用:在智能终端行业,超半数手机厂商使用文心大模型,多家车企已接入百度文心大模型。 5. 能力要求:大模型进入产业落地后,除模型本身能力外,落地应用所需的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业落地大模型需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正成为体系化之战。 此外,2023 年国内大模型发展情况包括:智谱推出了 4 代 GLM,MiniMax 推出新模型及“星野”APP,月之暗面在长 Token 能力上表现出色。但在 2C 端真正出圈的产品较少,在 2B 行业中,大模型对收入撬动有限。硬件层上,国内仍缺乏胜任大模型训练的芯片,华为昇腾在单卡指标上接近,但存在稳定性和生态问题。
2025-03-27
AI音乐产业报告
以下是为您提供的关于 AI 音乐产业的相关报告内容: 1. 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 2. 《2024 年度 AI 十大趋势报告》发布,其中包含 AIGC 音乐应用产业报告。报告指出 AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。 3. 2024 年度 AI 十大趋势报告还提到,AI 能基于玩家游戏行为评估玩家技能水平和游戏风格,同时动态调整游戏难度,增加或降低敌人的数量和强度,改变游戏环境等;不断收集的玩家数据,还能使 NPC 和游戏系统更加适配玩家水平。同时在游戏运营过程中,AI 客服和 AI 分析也是提升玩家体验的重要一环。 4. 许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,如 2023 年 Genfun.ai 和 Meshy 联合制作的游戏《Soul Chronicle》,在当时是首款实时 3D+AIGC+UGC 的 MMO 手游。最大突破是首先制作出了一种与游戏完美融合的 3D AIGC 技术,在游戏中可以实时生成角色皮肤。2024 年 Bitmagic 释出了他们推出的能直接创建“游戏世界”的平台——《Roleverse》的最新成果,在平台内可以使用提示在游戏内定制角色,对角色进行缩放、挤压和拉伸,也可以轻松地对游戏世界进行编辑。
2025-03-11
AI怎样赋能文旅产业发展
AI 赋能文旅产业发展主要体现在以下几个方面: 1. 全流程制作文旅宣传片:利用 AIGC 技术生成全国文旅宣传片,如《AI 我中华》,融合了 AI 生成视频及 AI 配音技术,将各地特色巧妙结合,展现大美中华。使用的工具包括 ChatGPT、Midjourney、Stable Diffusion、Runway、PS、AE、Ebsynth 等。 2. 提升 2D 美术效果:在 2D 美术中广泛使用图像生成技术,主流生成式图像应用如 DALLE 2.0、Stable Diffusion 和 Midjourney 提升了图像生成的精细化程度和提示对图像生成结果的控制能力。 3. 优化 3D 模型生成流程:在 3D 模型生成中,AI 可直接完成可调整的 3D 粗模,大大提升效率。 4. 改善游戏测试与优化环节:AI 在游戏测试环节中可模拟玩家、NPC 和游戏模型,在优化环节承担改善角色动画、编程加速、自动化游戏测试等功能,通过生成文字、图片、视频、音乐来缩减时间和资源消耗,快速识别并解决问题。 5. 丰富故事情节与 NPC 设计:在游戏设计中,AI 依托自然语言生成用法,用于角色与故事生成、游戏机制创新等方面,通过针对性训练数据集强化 NPC 模型的基础能力。 6. 创新音乐与音效生成:AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线,可用于填充游戏音效和音乐。 7. 提升玩家体验与个性化:AI 能评估玩家技能水平和游戏风格,动态调整游戏难度,还能在游戏运营中提供客服和分析服务。 8. 带来新的游戏玩法:如《Soul Chronicle》实现了实时 3D+AIGC+UGC,《Roleverse》可在平台内定制角色和编辑游戏世界。
2025-03-06
人工智能生成内容(AIGC)的突破、对齐及产业培育,感悟
以下是关于人工智能生成内容(AIGC)的突破、对齐及产业培育的感悟: 一、原理与概念 1. 人工智能(AI):是一种目标,让机器展现智慧,简称 AI。 2. 生成式人工智能(GenAI):目标是让机器产生复杂有结构的内容,简称 GenAI。 3. 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 4. 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因有很多层所以叫深度),神经网络可用于多种学习方式。 5. 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:是 AIGC 技术的一个应用实例,是美国 OpenAI 公司开发的基于大型语言模型的对话机器人,能根据用户输入生成连贯且相关的文本回复。 二、AIGC 的特点与应用 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 三、相关概念的关系与区别 AGI、GenAI、AIGC 几个概念有所区别与联系,具体可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。 四、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-03-01
请基于WHO提出的“健康老龄化”这个概念,论述AI和养老产业以及健康老龄化的关系,并举出在WHO、英国以及美国的实例
目前知识库中没有关于“基于 WHO 提出的‘健康老龄化’概念论述 AI 和养老产业以及健康老龄化关系,并列举 WHO、英国以及美国实例”的相关内容。但据现有知识,AI 在养老产业和健康老龄化方面具有重要作用。AI 可以通过智能监测设备实时收集老年人的健康数据,提前预警疾病风险;还能借助智能陪伴机器人为老年人提供心理支持和社交互动。 在 WHO 方面,可能尚未有明确的具体实例,但在理念倡导上可能会强调利用创新技术促进健康老龄化。 英国可能在一些养老机构中应用了 AI 技术来优化服务流程和提高护理质量。 美国或许在医疗保健领域利用 AI 辅助诊断和治疗,以更好地满足老年人的健康需求。但具体的实例还需要进一步查阅权威资料和最新研究。
2025-02-24