Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

VIT模型是什么

Answer

VIT 模型是视觉变压器(Vision Transformer)模型。

在计算机视觉领域,在深度学习革命之前,传统图像生成技术依赖手工制作特征,能力有限。生成对抗网络、变分自编码器等的引入是重要转折点,后续如流模型、扩散模型等进一步提高了图像生成质量。过去十年,生成式计算机视觉模型发展多样,在自然语言处理中成功应用的变压器架构被引入计算机视觉,如视觉变压器(ViT)和 Swin 变压器。

Zhai 等人展示了有足够训练数据的 ViT 模型的性能-计算前沿大致遵循(饱和)幂律。谷歌研究提出了高效稳定训练 22B 参数 ViT 的方法,使用冻结模型产生嵌入,然后在顶部训练薄层可实现出色性能。

在语音合成方面,VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)是一种结合变分推理、标准化流和对抗训练的高表现力语音合成模型。与 Tacotron 和 FastSpeech 不同,VITS 直接将字符或音素映射为波形,不需要额外声码器重建波形,是真正的端到端语音合成模型。它通过隐变量而非之前的频谱串联语音合成中的声学模型和声码器,利用随机时长预测器提高合成语音的多样性,输入同样文本能合成不同声调和韵律的语音,合成音质较高,还可借鉴 FastSpeech 单独对音高等特征建模以提升质量,是非常有潜力的语音合成模型。

Content generated by AI large model, please carefully verify (powered by aily)

References

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

视觉模型的规模化定律。有了LLMs的规模化定律,自然会问视觉模型的发展是否遵循类似的规模化定律。最近,Zhai等人[24]展示了,有足够训练数据的ViT模型的性能-计算前沿大致遵循(饱和)幂律。继他们之后,谷歌研究[25]提出了一种高效稳定训练22B参数ViT的方法。结果显示,使用冻结模型产生嵌入,然后在顶部训练薄层可以实现出色的性能。Sora作为一个大型视觉模型(LVM),符合这些规模化原则,揭示了文本到视频生成中的几种新兴能力。这一重大进展强调了LVMs实现类似LLMs所见进步的潜力。新兴能力。LLMs中的新兴能力是在某些规模上——通常与模型参数的大小有关——表现出的复杂行为或功能,这些行为或功能并未被开发者明确编程或预期。这些能力被称为“新兴”,因为它们源于模型在多样化数据集上的全面训练,以及其庞大的参数数量。这种组合使模型能够形成联系并做出超越简单模式识别或死记硬背的推断。通常,这些能力的出现不能通过从小规模模型的性能外推来直接预测。虽然许多LLMs,如ChatGPT和GPT-4,展示了新兴能力,但直到Sora的出现,展示类似能力的视觉模型还很少。根据Sora的技术报告,它是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。除了其新兴能力,Sora还展示了其他显著能力,包括遵循指令、视觉提示工程和视频理解。Sora的这些功能方面代表了视觉领域的重大进步,并将在后续部分进行探讨和讨论。

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

在计算机视觉(CV)领域,在深度学习革命之前,传统的图像生成技术依赖于诸如纹理合成[5]和纹理映射[6]等方法,这些方法基于手工制作的特征。然而,这些方法在生成复杂和生动的图像方面的能力是有限的。图3:视觉领域生成式AI的历史。生成对抗网络(GANs)[7]和变分自编码器(VAEs)[8]的引入标志着一个重要的转折点,因为它在各种应用中展现出了非凡的能力。随后的发展,如流模型[9]和扩散模型[10],进一步提高了图像生成的细节和质量。最近在人工智能生成内容(AIGC)技术方面的进展,使内容创作民主化,使用户能够通过简单的文本指令生成所需内容[11]。在过去的十年中,生成式计算机视觉(CV)模型的发展采取了多种路径,如图3所示。这一格局在成功应用变压器架构[12]于自然语言处理(NLP)后开始显著转变,如BERT[13]和GPT[14]所示。在CV中,研究人员通过将变压器架构与视觉组件相结合,将这一概念推向更远,使其能够应用于下游CV任务,如视觉变压器(ViT)[15]和Swin变压器[16]。与变压器的成功平行,扩散模型在图像和视频生成领域也取得了重大进展[10]。扩散模型提供了一个数学上合理的框架,通过U-Nets[17]将噪声转换成图像,其中U-Nets通过学习在每一步预测和减轻噪声来促进这一过程。

TTS超全教程

VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)是一种结合变分推理(variational inference)、标准化流(normalizing flows)和对抗训练的高表现力语音合成模型。和Tacotron和FastSpeech不同,Tacotron / FastSpeech实际是将字符或音素映射为中间声学表征,比如梅尔频谱,然后通过声码器将梅尔频谱还原为波形,而VITS则直接将字符或音素映射为波形,不需要额外的声码器重建波形,真正的端到端语音合成模型。VITS通过隐变量而非之前的频谱串联语音合成中的声学模型和声码器,在隐变量上进行建模并利用随机时长预测器,提高了合成语音的多样性,输入同样的文本,能够合成不同声调和韵律的语音。VITS合成音质较高,并且可以借鉴之前的FastSpeech,单独对音高等特征进行建模,以进一步提升合成语音的质量,是一种非常有潜力的语音合成模型。

Others are asking
how do I get an invite code for manus AI
Manus 的内测资格申请流程和条件如下: 1. 申请渠道:Manus 官网是唯一官方的申请渠道,要注意别被骗。团队表示会优化内测流程,保障公平性和用户体验。 2. 邀请码获取:Manus 团队从未开设付费获取邀请码的渠道,所有内测资格均免费发放。目前二手交易平台上的邀请码价格飙升,从 999 元炒至 5 万元,但这些都不是官方渠道获取的邀请码。 3. 内测名额:由于系统容量有限,团队将优先保障现有用户的核心体验,并逐步有序地释放新的邀请名额。 此外,有人对 Manus 进行了直播测试 8 小时,设计了 6 个最想测的任务,按照顺序分别是: 1. 创作世界首支 AI 自主创作的自我介绍的视频:https://manus.im/share/EWwJDzTWrW8MjqThadvTT9?replay=1 2. 帮草拟邮件,找到 Manus 官方邮箱,完成 Manus 邀请码的申请:https://manus.im/share/Fk6f4LCKvuM0lQ62EJf6SZ?replay=1 3. 自主玩 2048 网页游戏,并给自己解说,写游戏心得:https://manus.im/share/5XJGL0FQP1nuWchxtqsV8R?replay=1 4. 安装《宝可梦:黑》,并尝试捕获第一只宝可梦:https://manus.im/share/pCPVNmrejPknbTy5GBuzAy?replay=1 5. 自行进入可灵 AI,创作一条由 AI 操作生成的 AI 视频:https://manus.im/share/Q08zzgKnAPIog5QxqMqHoA?replay=1 6. 让 Manus 自行调查自己所处的环境,输出 Manus 自己的技术架构:https://manus.im/share/Gez1G14tfRexf50GMZyckD?replay=1
2025-03-10
I am new to Ai, I want to learn about, however I don’t know how to start to create a tailor AI that can suit for my background and can help me to increase my work productivity. Can you show me how I can learn ai from beginning step by step?
以下是为您提供的从零基础开始学习 AI 并创建适合您背景、能提高工作效率的定制 AI 的逐步指南: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 技术应用 如果您对生成式人工智能还不甚了解,当务之急是迅速掌握其基本概念和潜在影响。您无需成为技术专家,深入每个技术细节,重点应放在理解这项技术如何革新我们的工作方式,如何重塑行业格局。这种宏观的理解将帮助您在变革中找准定位,抓住机遇。 深入了解市场上现有的人工智能产品和工具,并积极尝试将它们应用到实际工作中。这种实践性的学习不仅能帮助您快速适应新技术,还能让您洞察到 AI 在实际工作中的优势和局限性。通过亲身体验,您将更好地理解如何将 AI 工具与您的专业知识和创造力相结合,从而在工作中创造更大的价值。 7. 精准控制生成式人工智能 当您深入了解了人工智能的背景并实际运用了这些产品后,您将迈入一个新的阶段:学习如何精准控制生成式人工智能,使之成为您工作的得力助手,显著提升您的工作效率和产出质量。在这个阶段,您将重点学习提示词技术。这项技能将帮助您编写更加清晰、精确的指令,从而更好地引导 AI 工具产生您所需要的结果。掌握了这项技能,您就能够更加灵活地运用 AI 工具,使其真正成为您工作中的得力助手。 8. 探索构建智能体(AI Agents) 您可以探索如何构建智能体(AI Agents)。这些智能体有潜力彻底革新您的工作方式。试想一下,拥有多个虚拟伙伴和助手与您共同工作的场景。每个智能体都可以被赋予特定的角色和任务,它们可以协同工作,大大提高您的工作效率和创新能力。 在实际应用中,为您提供几条准则: 如果您不确定如何为您的 AI 网站设计徽标,可以使用 AI 徽标生成器。网上有许多不同的 AI 徽标生成器可供选择,例如 Logomaster.ai、Free Logo Design、Logo AI、Looka logo maker(原名 Logojoy)、Brandmark、DesignEvo、Tailor Brands、Designhill 等。 为您的 AI 网站新徽标起草设计概要,包括项目名称、客户、日期、目的、目标受众和品牌属性等方面。 希望以上内容对您有所帮助,祝您在学习 AI 的道路上取得成功!
2024-12-27
GPT-SoVITS怎么导出
GPTSoVITS 是一个声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点和使用方法: 特点: 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感。 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 预训练模型:项目提供了一些已经训练好的模型,你可以直接下载使用。 导出方法: 先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits 克隆声音,做出文案的音频。 调整语气和语调的方式之一是换参考音频。 相关资源: GitHub: 视频教程: 基础 wav2lip+高清修复整合包下载地址: 产品:
2024-12-13
帮我写一段120字的英文短文,回答这个问题: the role of creativity in problem-solving
Creativity plays a vital role in problemsolving. It enables us to think outside the box and come up with unconventional solutions. With creativity, we can combine different ideas and perspectives, finding unique approaches that might not be obvious at first. It helps us break free from traditional patterns and discover novel ways to overcome challenges.
2024-11-04
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14