Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请问我想用AI辅助我做主题式学习,应该如何进行?

Answer

利用 AI 辅助进行主题式学习,可以参考以下步骤:

  1. 确定主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。
  2. 收集资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。
  3. 分析总结:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。
  4. 生成大纲:使用 AI 写作助手生成主题学习的大纲,包括引言、文献综述、方法论、结果和讨论等部分。
  5. 撰写综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。
  6. 构建方法:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。
  7. 数据分析:如果主题学习涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。
  8. 撰写编辑:利用 AI 写作工具来撰写主题学习的各个部分,并进行语法和风格的检查。
  9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。
  10. 审阅修改:利用 AI 审阅工具来检查主题学习的逻辑性和一致性,并根据反馈进行修改。
  11. 提交前检查:最后,使用 AI 抄袭检测工具来确保主题学习的原创性,并进行最后的格式调整。

需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行主题式学习时,应保持批判性思维,并确保学习的质量和学术诚信。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何利用AI写课题

利用AI技术来辅助写作课题可以提高效率并激发新的创意。以下是一些步骤和建议:1.确定课题主题:明确你的研究兴趣和目标,选择一个具有研究价值和创新性的主题。2.收集背景资料:使用AI工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。3.分析和总结信息:利用AI文本分析工具来分析收集到的资料,提取关键信息和主要观点。4.生成大纲:使用AI写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。5.撰写文献综述:利用AI工具来帮助撰写文献综述部分,确保内容的准确性和完整性。6.构建方法论:根据研究需求,利用AI建议的方法和技术来设计研究方法。7.数据分析:如果课题涉及数据收集和分析,可以使用AI数据分析工具来处理和解释数据。8.撰写和编辑:利用AI写作工具来撰写课题的各个部分,并进行语法和风格的检查。9.生成参考文献:使用AI文献管理工具来生成正确的参考文献格式。10.审阅和修改:利用AI审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。11.提交前的检查:最后,使用AI抄袭检测工具来确保课题的原创性,并进行最后的格式调整。请记住,AI工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用AI进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。内容由AI大模型生成,请仔细甄别。

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:如何用 AI 进行英语学习和数学学习

使用AI进行英语学习和数学学习可以带来许多好处,以下是一些方法和建议:[heading3]英语学习:[content]1.智能辅助工具:利用AI写作助手(如Grammarly)进行英语写作和语法纠错,帮助您改进英语表达和写作能力。2.语音识别和发音练习:使用语音识别应用(如Call Annie)进行口语练习和发音纠正,让AI提供实时反馈和建议。3.自适应学习平台:使用自适应学习平台(如Duolingo)利用AI技术为您量身定制学习计划,提供个性化的英语学习内容和练习。4.智能导师和对话机器人:利用智能对话机器人(如ChatGPT)进行英语会话练习和对话模拟,提高您的交流能力和语感。[heading3]数学学习:[content]1.自适应学习系统:使用自适应学习系统(如Khan Academy)结合AI技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。2.智能题库和作业辅助:利用智能题库和作业辅助工具(如Photomath)通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。3.虚拟教学助手:使用虚拟教学助手(如Socratic)利用AI技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。4.交互式学习平台:参与交互式学习平台(如Wolfram Alpha)的数学学习课程和实践项目,利用AI技术进行数学建模和问题求解。通过结合AI技术和传统学习方法,您可以更高效、更个性化地进行英语学习和数学学习,并取得更好的学习效果。内容由AI大模型生成,请仔细甄别。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10
我是一名日语大四学生,我要利用我的开题报告结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
要向 DeepSeek 提问以结合您的开题报告完成论文初稿,您可以遵循以下正确的提问模板: 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,例如您的开题报告的主题、研究目的、已有的研究进展等,以使 DeepSeek 更好地理解您的问题。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如您希望它根据开题报告提供论文大纲、分析相关数据、提供文献综述等,提出的需求越明确获得的答案越有价值。 4. 补充要求:您还可以提出关于回答的格式、风格、字数等方面的要求。 例如:您可以这样提问“我赋予您论文撰写助手的角色,我的开题报告主题是关于日本文化在现代社会中的变迁,目前我已经完成了初步的文献收集和分析,我的目标是请您根据这份开题报告为我生成一个详细的论文大纲,要求大纲结构清晰,逻辑连贯,具有一定的创新性”。
2025-03-31
我是一名日语大四学生,我要利用我的开题报告和文献综述结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
向 DeepSeek 提问时,可遵循以下万能通用的提问公式:提示词=赋予角色+背景/现状+目标/需求+补充要求。 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,以使它更好地理解您的问题,并为您提供更准确的答案。例如您是日语大四学生,正在进行开题报告和文献综述相关工作。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如完成一篇结合开题报告和文献综述的论文初稿。 4. 补充要求:例如指定写作风格要具有吸引力、友好性和幽默感等。 另外,在使用 DeepSeek 时还需注意: 对于像“仅通过东方集团的历年公开财务数据,分析这家公司的潜在投资机会和风险”这样的特定需求,可能需要进一步追问以获得更满意的结果。 与 DeepSeek 交流时,在其提供方法建议后,可以追问背后的方法论。 对于创作类的需求,如脱口秀段子,可以结合特定人物的特点和风格,并指定主题和字数等要求。
2025-03-31
我想做个专业领域的智能客服,请问您有一些类似案例吗?
以下是为您提供的一些相关案例: 在 Manus 案例中,有让其创建需要上传文件的 dify 工作流,如根据多篇文章写脱口秀段子,并制作简便美观的网页和接入工作流的 api 等复杂操作。 有关于智能客服场景如何帮助企业更好地对内服务客服、对外服务客户的案例。 在通用 AGENT 案例合集中,包括生活娱乐类 AGENT 方面的案例,如根据出差计划做成的具有多种功能的互动式网页,如供应商工厂探索地图;还有整活娱乐方面的案例,如荒谬句子生成器和豆瓣品味分析师。荒谬句子生成器实现了小时候的线下游戏功能,并增加了扩展句子和虚拟专家评论功能;豆瓣品味分析师能根据用户的豆瓣 id 获得评价信息并生成锐评报告。
2025-03-28
辅助写论文
以下是关于利用 AI 辅助写论文的相关内容: 在论文写作领域,AI 技术的应用发展迅速,能提供多方面的辅助,包括文献搜索、内容生成、语言润色、数据分析、论文结构和格式以及研究伦理和抄袭检测等。以下是一些常用的 AI 工具和平台: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。 此外,如果担心孩子用 AI 代写作文偷懒,可以让孩子提交与 AI 共同完成作文的聊天记录,要求孩子对 AI 作文进行点评批改、让 AI 迭代出更好的文章,重点关注孩子在对话记录中能否说清 AI 作文的优缺点及修改方法。
2025-04-13
DeepSeek辅助写论文
以下是关于 DeepSeek 辅助写论文的相关信息: DeepSeek 在写文方面全面领先,但长文可能太发散、文风用力过猛,导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。 用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 有人用 DeepSeek 辅助写论文,如 Yvonne。 此外,还有以下关于 DeepSeek 的其他信息: 清华大学发布了《DeepSeek 政府应用场景与解决方案(2025 年)》报告,围绕其在政务领域的应用展开,指出政务数字化正迈向“AI+政务”阶段,DeepSeek 在城市治理、便民服务、数据安全等方面有广泛应用,还可辅助公文写作,采用混合部署,涉及本地知识库、模型微调等多种技术。 人们还利用 DeepSeek 做了很多其他事情,如脑爆活动方案、会议纪要、分析总结复盘内容、生成专业专用软件详细使用过程、代码编写、分析感情问题、写营销方案、写小红书笔记、做设计头脑风暴、写周报等。
2025-04-12
如何用AI辅助写论文,
利用 AI 辅助写论文可以按照以下步骤进行: 1. 确定论文主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:利用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:使用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,运用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并进行最后的格式调整。 在论文写作领域,常用的 AI 工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。同时,如果担心孩子用 AI 代写作文偷懒,可以让孩子提交与 AI 共同完成作文的聊天记录,重点关注孩子能否说清楚 AI 作文的优缺点及如何修改。
2025-04-11
请给我提供一个 AI辅助我进行知识管理的方案
以下是一个 AI 辅助知识管理的方案: 1. 利用提示词规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可分析您的工作模式和内容类型,自动生成提示词,助您将信息和知识分类到相应部分,简化分类过程,加快组织和检索信息。核心是理解以行动为驱动的笔记逻辑。 2. 借助提示词设计笔记标签系统:有效的标签系统对知识管理很关键,AI 能分析笔记内容和使用习惯,推荐合适的标签和结构,提高检索效率。 3. 让知识助手 Bot 渐进式积累领域知识:随着在特定领域的深入,需要系统积累和更新知识。知识助手 Bot 可根据学习进度和兴趣点,定期推送相关文章、论文和资源,实现渐进式学习,扩展知识边界并确保知识更新。例如基于 dify.ai 将数百个思维模型整合成知识库,根据不同对话和条件判断为用户选择适用的思维模型分析工具,封装成智能分析的 Bot。 4. 基于已积累知识的 RAG 方法进行深度研究:RAG 是结合检索和生成的 AI 模型,应用于知识管理,能在深度研究时自动检索相关知识点和资料,辅助构建更全面深入的分析。 5. 打造个人知识导师,随时对话辅助梳理线索:创建个人知识管理员机器人,随时与之对话,询问特定知识点或寻求解决问题思路。它能基于知识库自学习,了解您的知识结构和需求,成为不可或缺的知识伙伴。 6. 构建最了解您的智能体作为 AI 写作助手:涵盖构思、草稿生成、内容迭代、润色与优化等全流程。构思阶段利用智能体生成创意点、主题或大纲;草稿生成基于构思让智能体生成文本草稿;内容迭代通过 promptchain 工具设计迭代提示修改完善草稿;润色与优化对最终文本进行语言风格和语调调整。通过实践和反馈优化 prompt 设计,使写作助手贴合个人风格和需求。 此外,生成式人工智能在知识管理应用程序方面也有新兴应用,例如用作管理组织内基于文本(或可能基于图像或视频)知识的手段。一些研究表明,针对组织内特定知识体系微调模型培训,可有效管理组织知识。一些公司正与领先的商业提供商合作探索基于生成式人工智能的知识管理理念,但用户可能需要培训或帮助来创建有效提示,且知识输出应用前可能仍需编辑或审查。
2025-04-11
怎么用AI辅助论文选题
以下是利用 AI 辅助论文选题的步骤和建议: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。 同时,要始终明确 AI 的角色是辅助手段。让 AI 去做那些机械重复、结构固定的部分,而把有判断力、价值取向的部分牢牢掌握在自己手中。例如,在写论文时,可以用 AI 校对格式、润色语法,但选题、新见解、论证框架这些核心创作环节一定要由自己完成。 在与 AI 互动中,可以主动思考,比如当得到 AI 的答案后,思考如果自己来回答会怎样,对比 AI 答案的新颖或不足之处。还可以利用 AI 检查漏洞,完善自己的思考。
2025-04-10
deep seek辅助写论文
以下是关于 DeepSeek 辅助写论文的相关信息: 中山大学发布的报告《李煜政:从技术突破到场景落地:大模型发展图谱与 DeepSeek 创新应用》(2025/03/25)指出,DeepSeek 在办公上可辅助公文写作、文档阅读与整理;在学习研究中,助力论文写作、知识搜索;还能用于创意设计、编程、表格处理等场景,提升效率与质量。如需下载研究报告,需加入知识星球(https://t.zsxq.com/18DnZxlrl)。 成都的尹睿认为可以用 DeepSeek 快速分析案例,辅助写咨询策划报告。DeepSeek 的案例分析能力为咨询策划报告提供了极强的效率赋能,能通过结构化数据提取和逻辑推理,快速定位关键信息,生成具备商业洞察的初步框架。若能在动态知识图谱联动、多模态决策沙盘、战略假设压力测试、风格化表达适配器等维度增强,将实现从“分析助手”到“策略共创伙伴”的跃迁。 在关于 AI 工具的探讨与展望中,DeepSeek 在写文方面全面领先,但长文会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。今年是 AI 大年,各模型厂压力大,开源使技术路径公开,大厂都在努力赶超,未来 AI 可能能追本溯源解决最原始需求,带来人类的黄金时代。Sam Altman 提出投资提升自身内在状态等以对冲 AGI 和 ASI 未来的风险,科幻小说家可能是未来史学家。可以让 Deepseek 模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征,如鲁迅的文风特点等。用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。大家可以在腾讯频道发布用 AI 写的小说并鉴赏,比较谁写的更有意思。还回顾了之前用 AI 创作的相关经历,如用分制法完成复杂任务、开源提示词等,并探讨将以往优秀创作在 R1 模型中重新尝试。
2025-04-09
如何制作一个只要输入主题内容,就可以制作文案和视频的工作流
以下是制作一个只要输入主题内容,就可以制作文案和视频的工作流的方法: 概述: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建,并写了教程供大家参考。 先看效果: 可查看 功能: 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 3. 在多维表格中使用字段捷径,引用该智能体。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 Coze 智能体创建: 1. “开始”节点: 共有 4 个输入变量,分别为:idea_txt(主题观点)、left_to_txt(画面左上角的文字)、right_to_txt(画面右上角的文字)、img_prmpot(画面中间图片生成提示词)。注意这 4 个变量名称要和智能体中提示词的变量对应一致,方便接收用户传入的参数。 2. “大模型”节点: 使用 DeepSeek R1 模型,提示词要求不复杂,说出需求即可,格式可用大白话说出来。 3. “文本”节点: 为将文案分句,每一句要生图、配音。选择按“句号”分句,具体可根据文案格式选择不同方式。 4. “图像生成”节点: 使用官方插件,模型选“LOGO 设计”。若要生成全景图,此插件效果欠佳,建议选其它插件。 5. “抠图节点”: 将上个节点生成的图片进行抠图。
2025-04-09
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
以水稻主要物候期遥感识别为主题,生成一篇论文大纲
以下是以水稻主要物候期遥感识别为主题的一篇论文大纲示例: 一、引言 1. 研究背景与意义 2. 国内外研究现状 3. 研究目的与内容 二、水稻物候期相关理论与遥感技术基础 1. 水稻物候期的定义与特征 2. 常用的遥感技术及原理 3. 遥感数据的类型与特点 三、水稻主要物候期的遥感特征分析 1. 不同物候期水稻的光谱特征 2. 多时相遥感数据在物候期识别中的应用 3. 影响遥感识别的因素 四、水稻主要物候期遥感识别方法 1. 基于光谱特征的识别方法 2. 基于植被指数的识别方法 3. 机器学习与深度学习在物候期识别中的应用 五、实验与结果分析 1. 研究区域与数据获取 2. 实验设计与流程 3. 识别结果的精度评估 4. 结果分析与讨论 六、结论与展望 1. 研究成果总结 2. 研究的局限性 3. 未来研究方向与展望 以上大纲仅供参考,您可根据实际研究需求进行调整和完善。
2025-03-21
结合北京房山区文化、地标建筑、生态景观等内容,设计房山区中小学数学节 LOGO,要求巧妙融合数学元素(如几何图形、数学公式、数学符号等)与 AI 元素(如神经网络图案、代码片段、智能机器人形象等),生动诠释 “数学 + AI=?” 的主题内涵。
以下是为您整合的相关内容: 北京具有丰富多样的特色元素,包括经典地标如万里长城、天安门广场、故宫角楼、天坛等,见证了历史变迁;宜居生活方面,有独特的美食如豆汁儿、脆皮烤鸭、老北京炸酱面,以及充满京腔的日常生活;潮流文化新地标如国家博物馆、胡同里的新老交融、环球影城、798 等;未来科技方面,有西二旗的上班族日常、北大化学系科研 vlog、世界机器人大会等。 在海报设计方面,若对 AI 回答有疑问可再搜索确认,对于想用的项目要确认与北京的关系及能否使用;兔爷、戏曲金句等北京有名元素可用,金句可分化。做海报时可借鉴三思老师毛绒玩具美食系列,先找参考、做头脑风暴。比赛征集内容有四个赛道,若做系列海报,围绕金句或偏向北京非遗项目做系列较简单。用 AI 制作海报时,如制作北京地标糖葫芦风格海报,可用集梦 2.1 模型,以天坛等建筑为画面中心,注意材质、抽卡选图和细节处理。 对于设计房山区中小学数学节 LOGO,您可以考虑将房山区的特色文化、地标建筑、生态景观与数学元素(如几何图形、数学公式、数学符号等)和 AI 元素(如神经网络图案、代码片段、智能机器人形象等)相结合。例如,以房山区的著名建筑为主体,融入数学图形进行变形设计,同时添加一些代表 AI 的线条或图案,以生动诠释“数学 + AI=?”的主题内涵。
2025-03-18
更通用一点,更落地一点,主题换成学习AI&LLM吧
以下是关于学习 AI&LLM 的相关知识: 一、AI 相关概念与技术 1. 概念 生成式 AI 生成的内容称为 AIGC。 AI 即人工智能。 2. 机器学习 电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 3. 深度学习 一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度)。 神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型) 对于生成式 AI,生成图像的扩散模型不是大语言模型。 对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 二、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 三、RL 与 LLM 融合的本质与阐释 AI 本质是一堆 scaling law。今天能看到最好的模型规模在 10 的 25 到 26 次方 FLOPs 这种规模,且数量级还会持续增长,算力是必要条件。一个值得被 scale up 的架构是基础,要支持不断加入更多数据。现在“吃”的是 base model 的 scaling law,未来可能会“吃”用户数据源的 scaling law。alignment 也有 scaling law,只要能找到对的数据就能解决。当 next token prediction 足够好时,能够平衡创造性和事实性。多模态数据的引入可推迟数据瓶颈问题,如视频和多模态的卡点解决不了,文本的数据瓶颈就会很关键。在限定问题(如数学或写代码)上,数据相对好生成,通用问题还没有完全的解法,但有探索方向。统计模型没有问题。
2025-03-17
如何自动化收集主流自媒体指定搜索到的主题内容?
目前没有关于如何自动化收集主流自媒体指定搜索到的主题内容的相关知识。但一般来说,您可以考虑以下几种可能的方法: 1. 使用网络爬虫工具,但需要注意遵守相关法律法规和网站的使用规则。 2. 利用一些现有的数据采集服务平台,它们可能提供针对自媒体内容的采集功能。 3. 尝试开发自定义的脚本或程序,通过调用自媒体平台的 API(如果有的话)来获取所需内容。但这通常需要一定的技术知识和开发能力。
2025-03-13