Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型的结构和训练方式

Answer

大模型的结构和训练方式如下:

  • 整体架构:
    • 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。
    • 数据层:包括静态的知识库和动态的三方数据集。
    • 模型层:分为 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。
    • 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。
    • 表现层:即应用层,是用户实际看到的地方。
  • 训练方式:
    • 收集海量数据:如研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。
    • 预处理数据:包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段等。
    • 设计模型架构:通常是一个复杂的神经网络,如可能会使用 Transformer 架构。
    • 训练模型:模型反复阅读数据,尝试预测句子中的下一个词,通过不断重复逐渐学会理解和生成人类语言。

此外,大模型的特点包括预训练数据量大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练)和参数多(如 Open 在 2020 年发布的 GPT-3 就已达到 170B 的参数)。模型架构方面,有 encoder-only(适用于自然语言理解任务,代表模型是 BERT)、encoder-decoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoder-only(更擅长自然语言生成任务,众多 AI 助手采用此结构)。

Content generated by AI large model, please carefully verify (powered by aily)

References

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

胎教级教程:万字长文带你理解 RAG 全流程

旁白当你发现大模型的效果并没有你预期想的那么好时,你打算放弃但是你也听到了另一种声音:如果大模型没有你想的那么好,可能是你没有了解他的能力边界。你不想就这么放弃,为了更好的理解大模型,你首先了解了他的创建过程[heading2]1.收集海量数据[content]想象一下,我们要教一个孩子成为一个博学多才的人。我们会怎么做?我们会让他阅读大量的书籍,观看各种纪录片,与不同背景的人交谈等。对于AI模型来说,这个过程就是收集海量的文本数据。例子:研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。[heading2]2.预处理数据[content]在孩子开始学习之前,我们可能会先整理这些资料,确保内容适合他的年龄和学习能力。同样,AI研究人员也需要清理和组织收集到的数据。例子:删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。[heading2]3.设计模型架构[content]就像我们要为孩子设计一个学习计划一样,研究人员需要设计AI模型的"大脑"结构。这通常是一个复杂的神经网络。这里我们就不展开了,我们只需要了解,为了让AI能够很好的学习知识,科学家们设计了一种特定的架构。例子:研究人员可能会使用Transformer架构,这是一种特别擅长处理序列数据(如文本)的神经网络结构。[heading2]4.训练模型[content]就像孩子开始阅读和学习一样,AI模型开始"阅读"我们提供的所有数据。这个过程被称为"训练"。例子:模型会反复阅读数据,尝试预测句子中的下一个词。比如给出"太阳从东方__",模型学会预测"升起"。通过不断重复这个过程,模型逐渐学会理解和生成人类语言。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
结构化提示词
以下是关于结构化提示词的相关信息: 云中江树是 Prompt 提示词框架 LangGPT 的作者,并组建了 EmbraceAGI 学习社区。他早在 2023 年 3 月就提出了结构化构建提示词的方法,并发布在 Github,很快收藏破千。LangGPT 是 Language For GPT 的简称,中文名为结构化提示词,于 2023 年 5.4 青年节开源发布,成为 GitHub 开源社区全球趋势热榜前十项目,并撰写了学术论文开源发表。其提出的结构化提示词已被百度、智谱、字节、华为等国内主流大模型智能体平台使用,当前已发展成为国内最具影响力的高质量提示词工程师学习交流社群。您可以通过了解更多。 小七姐在其 Prompt 喂饭级系列教程小白学习指南(四)中提到,结构化 Prompt 的思想通俗来说就是像写文章一样写 Prompt。结构化编写 Prompt 本身算是提示词编写的进阶学习内容,这里为新手列举了一套(极简)基础的结构化编写 Prompt 的框架,例如:Role: Suno 结构提示词包含了众多流派和风格,如:爵士转折。
2025-04-12
即梦提示词的描述结构框架是什么
即梦提示词的描述结构框架主要包括以下方面: 1. 提示词基础架构: 主体/场景 场景描述 环境描述 艺术风格/媒介 调整句式和语序,避免主体物过多/复杂、主体物分散的句式描述。 避免模糊的术语表达,尽可能准确。 使用更加流畅准确的口语化措辞,避免过度文学化的叙述。 丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。 2. 提示词与画面联想程度的说明: 以单帧图像为例介绍提示词与画面联想的关系。 基础词示例:玻璃桌上的咖啡杯,杯子外面写着单词 LOVE。 适度联想扩充:花园里(具体的位置描述)的透明(材质描述)玻璃桌上的咖啡杯,杯子外面写着单词 LOVE,周围满是盛开的鲜花(具体的位置描述/环境描述),和煦的阳光洒满整个花园(环境描述),Claude Monet(艺术家风格),印象派风格(艺术流派风格)。 联想关键点: 具体详实的位置描述/环境描述:笼统来讲就是在进行构图,可以帮助构建画面的基本呈现效果。 艺术风格描述:进一步提升效果和氛围,统一画面风格。 此外,结构化提示词框架还包括: 1. 标识符:如 、<> 等符号(、 也是),依次标识标题、变量,控制内容层级,用于标识层次结构。 2. 属性词:如 Role、Profile、Initialization 等等,包含语义,是对模块下内容的总结和提示,用于标识语义结构。 您可以把结构化提示词框架当做提示词的八股文标准,在不了解如何开始进行提示词设计的时候,当做一个通用的标准格式来使用。结构化提示词的概念在行业内应用广泛且成熟度较高,您可以在即刻、知识星球、知乎等很多地方看到优秀的类型案例。例如以下案例: 关于结构化提示词的理论感兴趣想要进一步了解更多信息的朋友,推荐大家阅读李继刚和云中江树的详细理论原文: 结构化语法提示词示例:可以在 AGI 的下列板块看到非常多优秀的结构化 Prompt 示例。
2025-03-23
如何用结构化提示词生成具体某一页PPT
以下是关于如何用结构化提示词生成具体某一页 PPT 的相关内容: 一、熊猫 Jay 的思路和指南 1. AI 生成 PPT 的主要思路 利用 AI 生成 PPT 大纲 培训文档助手提供核心提示词(仅供参考,可在此基础上丰富) 本章节结合 ChatGPT GPT4 模型生成大纲,也可利用其他 AIGC 工具 结构化提示词模版大多以 Markdown 语法构建,“”代表一级标题,“”代表二级标题,“”代表无序列表 输入关键信息生成大纲,包括针对不同人群的受众分析 2. 注意事项 提示词是利用 LangGPT 生成的基本提示词 语法的详细用法可自行了解 二、Kimi 的 15 款官方提示词 1. 【PPT 精炼】整理各种课程 PPT,输出结构明晰、易于理解内容文档 2. 【?爆款文案】生成高质量的爆款网络文案 3. 【?影剧推荐】根据喜好推荐影视,提供保姆级资源渠道 4. 【?影评达人】专业生成引人入胜、富有创意的电影评论 5. 【?职业导航】私人职业路径规划顾问,综合考虑个人特质、就业市场和发展前景 6. 【?营销策划】为产品或服务提供定制化营销活动策划 7. 【?面试模拟】私人面试 mock 伙伴,根据简历信息和求职岗位进行模拟面试 8. 【?宣传 slogan】快速生成抓人眼球的专业宣传口号 9. 【✍️期刊审稿】提前预知审稿人对文章的吐槽 10. 【?诗意创作】现代诗、五言/七言诗词信手拈来的诗歌创作助手 11. 【?推闻快写】专业微信公众号新闻小编,兼顾视觉排版和内容质量,生成吸睛内容 12. 【?要点凝练】长文本总结助手,能够总结用户给出的文本、生成摘要和大纲 13. 【?短剧脚本】创作定制化短视频脚本,包含拍摄要求和分镜细节 14. 【?美文排版】使用 Unicode 符号和 Emoji 表情符号优化文字排版,提供良好阅读体验 整理收录:小七姐 Prompt 星球:https://t.zsxq.com/15KhQ0RE7 三、甲木的方法 1. 让 Claude 帮做「古诗词卡片」 语文老师 PPT 配图有救了 主题+方向=符合诗词原意调性的古诗词名片 流程简单:输入 Prompt,用户输入主题、风格,AI 输出最终结果 获取提示词:第一版规定 AI 排版,固定输出;第二版释放 AI 创意,自由发挥,不受拘束 开源了提示词,可直接获取,关注、点赞、转发更佳 希望以上内容对您有所帮助。
2025-03-17
可视化分析的AI软件工具有哪些,可以生成线性结构、矩阵结构、框架结构、系统结构等
以下是一些可以用于生成线性结构、矩阵结构、框架结构、系统结构等可视化分析的 AI 软件工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包含逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2025-03-06
可视化分析的软件工具有哪些,可以生成线性结构、矩阵结构、框架结构、系统结构等
目前常见的可视化分析软件工具包括:Tableau、PowerBI、Excel、Google Data Studio、QlikView 等。但具体哪些工具能够生成您所提到的线性结构、矩阵结构、框架结构、系统结构等,可能需要您进一步查阅它们的详细功能介绍和实际使用体验来确定。
2025-03-06
我想找一个可以把服装图片用ai的方式直接‘穿’在另一张图片的模特身上
以下是两种可以将服装图片用 AI 的方式“穿”在另一张图片的模特身上的方法: 方法一:使用 ComfyUI GeminiAPI 1. 在 Google 的 AI Studio 申请一个 API key(需要网络环境),有免费的额度,网址为:https://aistudio.google.com/apikey?hl=zhcn 。 2. 安装相关依赖,根据使用的情况选择手动安装(如果使用 ComfyUI 便携版或自己的 Python 环境)或通过 ComfyUI Manager 安装。 手动安装:安装相关依赖。 通过 ComfyUI Manager 安装:在 ComfyUI 中安装并打开 ComfyUI Manager,在 Manager 中搜索“Gemini API”,然后点击安装按钮。 方法二:使用【SD】 1. 进行 SAM 模型分割:来到图生图中,提示词输入“蓝色毛衣”,蒙版区域内容处理改为“填充”,尺寸改为和图像一致,重绘幅度为 1。 2. 处理可能出现的问题:如蒙版区域较大导致的衔接问题,可以通过降低重绘幅度或添加一个 openpose 来控制人物的身体,得到正确的姿势。 3. 选择合适的重绘功能:除了使用图生图的局部重绘,还可以使用 controlnet 的局部重绘功能,控制模式选择“更注重提示词”,具体效果可自行试验选择。
2025-04-09
我想了解AI的应用方式
AI 的应用方式广泛且多样,主要包括以下几个方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发过程。 个性化医疗,提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,辅助贷款决策。 投资分析,帮助投资者做出明智决策。 客户服务,提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐,根据客户数据推荐感兴趣的产品。 搜索和个性化,改善搜索结果和提供个性化购物体验。 动态定价,根据市场需求调整产品价格。 聊天机器人,回答客户问题和解决问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 供应链管理,优化供应链提高效率和降低成本。 机器人自动化,控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶,提高交通安全性和效率。 交通管理,优化交通信号灯和流量缓解拥堵。 物流和配送,优化路线和配送计划降低运输成本。 无人机送货,将货物快速送达偏远地区。 6. 其他应用场景: 教育,提供个性化学习体验。 农业,分析农田数据提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用提高能源效率。 此外,还有众多具体的 AI 应用产品,如辅助创作与学习方面的 AI 智能写作助手、语言学习助手等;推荐与规划方面的图像识别商品推荐、旅游行程规划器等;监控与预警方面的宠物健康监测设备、家居安全监控系统等;优化与管理方面的办公自动化工具、物流路径优化工具等;销售与交易方面的艺术作品生成器、汽车销售平台等。总之,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2025-04-09
ai变现方式有哪些
以下是一些常见的 AI 变现方式: 1. 电商方面: 利用 AI 制作服装,如 AI 小绿裙,单价 239 卖了 1160 多份,几个月共卖 27 万。可使用 sd、mj 等工具制作,新手也可用 mewxai 或幻火。 用 AI 定制萌娃的头像,单价 19.9,卖了 2675 份,执行力强的一个月能有 2000 3000 的收入。 2. 摊位活动: 乐易科学院:通过 AI 技术结合多种能量形式从多方面讲解国学和传统文化,进行批八字、调风水、性格色彩分析等。 AIGC 策划程序美术(3AI 简称 3A 游戏)应用独立游戏开发。 AI 人像摄影绘画。 B2B AI 营销与 AI 落地项目快速落地,涵盖 AI 训练、美国独立站搭建、Google seo 与 AI 结合等,并开发了多种 AI 工具,如帮 HR 筛选简历的工具、行业新闻 AI 生成与自动推送的工作流、小红书 AI 生成的工具、Newsletter AI 生成的工具等。 3. 个人方面: 在公司给自己贴 AI 大神标签。 在社交网络进行分享,扩大影响力,承接项目开发。 二创方向,如增加画板节点,结合公司 Logo 生成一系列公司主题的产品邮票,承接类似需求,扩充工作流以适应更复杂的业务,修改提示词调整生图内容方向。
2025-04-09
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
想进入AI 这个赛道,有啥搞钱方式
以下是进入 AI 赛道的一些搞钱方式: 1. 参加“城市狂想”文旅短视频创意大赛: 该大赛由百度百家号主办,国内最大 AI 开源社区通往 AGI 之路协办,于 8 月 27 日正式开启。 无论个人、团体还是机构,AI 视频创作者或普通自媒体创作者,都可选择适合的分赛道参与,奖金池达 60000 元。 优质作品有机会获得单项 10000 元奖金及百+助推,还有机会获得地方政府/媒体扩圈传播,百度 APP 城市频道商业 banner 推荐。 针对零基础/技术欠缺的朋友,下周将在社区开设线上直播课程,由行业内顶尖的 AI 艺术家手把手教学如何制作 AI 文旅宣传片。 报名方式: 第一步,报名,填写右侧报名链接,本赛道为实名制,未报名作者不参与评奖。https://www.wjx.top/vm/w2oCF2q.aspx 第二步,投稿,在百家号创作者后台/百度 APP,带话题城市狂想发布符合活动要求的视频内容。(允许同一作者投稿多个参赛作品,或参与多部参赛作品制作。) 第三步,提交作品,填写右侧提交作品链接。https://www.wjx.top/vm/wvfqf2f.aspx 2. 运营 AI 创作账号: 变现方式:分为通过官方蒲公英平台接单和主流媒体约稿。蒲公英平台会收取 10%手续费,行业 AI 视频价格一分钟约 2.5 万到 4 万,主流媒体约稿稿费可能较低但有背书作用。 平台选择:推荐小红书和 B 站。小红书从种草平台逐渐变为知识社区,其知识属性适合 AI 创作者,视频号也值得做但经验分享较少。 内容形式:小红书能发视频就发视频,小红书的视频 UI 界面改版且推送机制变化,后续可能重点发力视频。 账号赛道:起号前期可用妖魔鬼怪类内容,但后期要扭转账号标签,此类账号变现方式窄,做账号要有价值,不能割韭菜,要把 AI 生态圈做大。 账号搭建与运营: 头像设计:要有记忆点和视觉冲击力,能让人记住。 名称选择:要独特,能体现个人或内容特点。 简介撰写:要有哲理或引人思考的话语,能吸引用户。 封面统一:要统一且具有账号属性,体现商业化。 追热点策略:账号初期应追热点,如对热门内容进行分析和跟风创作。 获取信任:做 IP 最终要赢得用户信任,用户信任能增强其对推荐内容的关注度。 3. 运营 AI 视频号: 保持日更:起号阶段至少两天一更,每天半小时就能完成 20 秒的简单内容制作,持续更新让平台看到创作者的诚意。 选择赛道:资讯类不做,选择 AI 视觉冲击力、利他的内容,有 AI 基础可做教程。 寻找对标:起号阶段要找 10 个对标的账号,参考其内容和模式。 克服心理:出镜做 IP,不要有容貌焦虑,长得丑或有特点都能有流量,要克服不敢出镜的心理。 蹭取热点:蹭经过平台验证有流量的热点,如黄油小熊,根据热点抄学制作,同时注意热点的舆论导向和合规性。 其他经验: 获取视频教程:可在 vtwoagi.com 网站的飞书知识库中获取 AI 视频创作教程。 应对抄袭方法:在抄袭者评论区留言指出,或找朋友点赞将评论顶上去,为自己账号引流。 特效视频长度:建议控制在 1 分钟内,不建议做费时费力的剧情或故事片。 账号限流处理:视频号限流建议重新起号,小红书限流可日更 10 天尝试。 内容商业价值:内容有商业价值的标准是甲方或品牌愿意投钱,如靠播放量或带货分成有收入。 封面获取渠道:可从堆友、吉梦、小红书等获取封面素材。 蹭取平台热点:做哪个平台就蹭哪个平台的热点。 寻找对标账号:在小红书创作者平台的成长榜样中可找到对标账号。 账号标签查看:在小红书创作者后台可查看账号是否被打上标签。 内容发布时间:8 点到 10 点、2 点到下午 5 点、7 点到 8 点较为合适。
2025-03-28
作为AI小白,如何开始学习AI?有哪些资源和方式推荐?
对于 AI 小白,以下是开始学习 AI 的建议和资源推荐: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,关于 AI 知识库使用及 AIPO 活动的介绍:讨论了 AI 知识库的使用情况、AIPO 活动的发起背景、内容安排及相关资源等。AIPO 线下活动及 AI 相关探讨:讨论了 AIPO 线下活动的规则和玩法,以及 AI 在科技发展中的重要地位和相关研究方向。way to AGI 社区活动与知识库介绍:讨论了 way to AGI 社区活动的安排、材料准备以及知识库的使用和相关内容更新等情况。 学习路径方面:有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。初学者入门推荐:推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。
2025-03-27