Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Stable Diffusion 启动器

Answer

以下是关于 Stable Diffusion 启动器的相关内容:

整合包

  • 觉得麻烦的同学可以使用整合包,解压即用。比如独立研究员的空间下经常更新整合包。秋叶的启动器也非常好用,将启动器复制到下载仓库的目录下即可,更新管理会更方便。
  • 电脑配置能支持 SD 运行的朋友,可以使用 B 站秋叶分享的整合包。具体安装方法:
    • 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru),下载《1.整合包安装》,存放到电脑本地。
    • 打开保存到电脑里的文件夹。
    • 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”,选择解压到 D 盘或者 E 盘。
    • 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。
    • 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,创建桌面快捷方式。

启动器设置

  • 打开启动器后,可一键启动。如果有其他需求,可以在高级选项中调整配置。
  • 显存优化根据显卡实际显存选择,不要超过当前显卡显存。不过并不是指定了显存优化量就一定不会超显存,在出图时如果启动了过多的优化项(如高清修复、人脸修复、过大模型)时,依然有超出显存导致出图失败的几率。
  • xFormers 能极大地改善内存消耗和速度,建议开启。准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。
  • 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。
  • Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同样地,也请注意插件的更新。

插件: Stable Diffusion 可配置大量插件扩展,在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。

低配置电脑: 电脑配置较低的朋友,可通过云平台畅玩 SD,比如“青椒云”。使用方法:

  • 点击链接(http://account.qingjiaocloud.com/signup?inviteCode=R0JJ9CHY)注册账号。
  • 下载并安装后,登录账号。
  • 点击右上角的个人中心进行实名认证。
  • 在进行实名认证后回到主界面,点击新增云桌面。想玩 Stable Diffusion 可以选“AIGC 尝鲜”,一般新注册的会有优惠券,可以免费试用。
  • 在新弹出的框框中点击“开机”按钮,稍等一下之后,点击“进入桌面”。进入桌面之后弹出的全部框框可以直接关掉。
  • 点击新打开桌面的“此电脑”,在 C 盘里面找到 SD 的根目录,点击“A 启动器.exe”。
  • 点击右下角的“一键启动”就可以进入 SD。用完云平台之后,记得关机,不然会持续计费。
Content generated by AI large model, please carefully verify (powered by aily)

References

SD新手:入门图文教程

觉得麻烦的同学可以使用整合包,解压即用。比如[独立研究员](https://link.zhihu.com/?target=https%3A//space.bilibili.com/250989068)的空间下经常更新整合包。[秋叶的启动器](https://link.zhihu.com/?target=https%3A//www.bilibili.com/video/BV1ne4y1V7QU)也非常好用,将启动器复制到下载仓库的目录下即可,更新管理会更方便。打开启动器后,可一键启动:如果有其他需求,可以在高级选项中调整配置。显存优化根据显卡实际显存选择,不要超过当前显卡显存。不过并不是指定了显存优化量就一定不会超显存,在出图时如果启动了过多的优化项(如高清修复、人脸修复、过大模型)时,依然有超出显存导致出图失败的几率。xFormers能极大地改善了内存消耗和速度,建议开启。准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地URL后说明启动成功如果报错提示缺少Pytorch,则需要在启动器中点击配置:Stable Diffusion webui的更新比较频繁,请根据需求在“版本管理”目录下更新:同样地,也请注意插件的更新:[heading3]关于插件[content]Stable Diffusion可配置大量插件扩展,在webui的“扩展”选项卡下,可以安装插件:点击“加载自”后,目录会刷新,选择需要的插件点击右侧的install即可安装。安装完毕后,需要重新启动用户界面:

教程:超详细的Stable Diffusion教程

电脑配置能支持SD运行的朋友们,接下来我会手把手教你安装SD的本地部署这里我们用到的是B站秋叶分享的整合包小白直接下载整合包可以避免很多困难整合包点开链接就能下载保存啦链接:https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru提取码:caru具体安装方法:①打开上面的链接,下载《1.整合包安装》,存放到电脑本地②打开保存到电脑里的文件夹③打开文件夹《1.秋叶整合包主包》——鼠标右击文件——点击“解压文件”④选择解压到D盘或者E盘,小心C盘被占满!!点击确定⑤解压完成后,来到第二个文件夹,双击里面的文件点击安装⑥打开刚刚解压保存的SD的根目录,找到启动器鼠标右击启动器——点击“发送到”——桌面快捷方式这样下次进入就可以直接在桌面双击进入,不用每次都到文件夹里面找啦!⑦双击启动器,等待更新接着点击左边第二个“高级选项”在显存优化里,根据自己电脑的显存选择(就是上面查看的专用GPU内存),自己电脑是多少就选多少⑧回到第一个一键启动,点击右下角的一键启动出现这个代码页面不用管,等一下就行了!SD的主界面会自动在网页上弹出来如果在上面的页面出现了报错可以回到最开始的界面在左边点击“疑难解答”,再点击右边的“开始扫描”最后点击“修复”按钮下面这个页面就是SD的主页面,大家看到这样一个复杂的页面千万不要慌实际上有些功能在我们基础使用中用不上接下来我们就把常用功能配合上实际例子来讲解

教程:超详细的Stable Diffusion教程

(电脑配置过关的朋友们,直接看第3部分安装)刚刚查看了电脑配置,发现自己电脑可能带不动SD的朋友们也不用担心,通过云平台,我们一样可以畅玩SD,做出好看的图片云平台就相当于我们远程控制别人配置更好的电脑,用别人电脑上的SD生成照片这里用的是“青椒云”,如果大家还有什么更好用的平台也可以分享出来噢!点击下面的链接就可以下载青椒云http://account.qingjiaocloud.com/signup?inviteCode=R0JJ9CHY云平台使用方法:①点击上面链接,注册账号②下载并安装后,登录刚刚注册好的账户③点击右上角的个人中心进行实名认证④在进行实名认证后回到主界面,点击新增云桌面想玩Stable Diffusion可以选“AIGC尝鲜”,一般新注册的会有优惠券,可以免费试用大家可以试试觉得好用再付费!(大多数云平台都是2~3元一个小时)⑤在新弹出的框框中点击“开机”按钮,稍等一下之后,点击“进入桌面”进入桌面之后弹出的全部框框可以直接关掉⑥点击新打开桌面的“此电脑”,在C盘里面找到SD的根目录,点击“A启动器.exe”⑦点击右下角的“一键启动”就可以进入SD啦⑧用完云平台之后,记得关机噢,不然会持续计费

Others are asking
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion是runway和goole联合开的吗
Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。 Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。 围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28