Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可不可以提供一个本地化的大模型方法,让我建立这个合规法律的知识库

Answer

以下是为您提供的本地化大模型及搭建合规法律知识库的方法:

一、通过 Open WebUI 使用大模型

  1. 首先访问相关网址。打开页面时需使用邮箱注册账号。
  2. 登陆成功后,若您使用过类似 ChatGPT 的大模型对话网站,对该页面不会陌生。
  3. Open WebUI 一般有两种使用方式:
    • 聊天对话。
    • RAG 能力,即让模型根据文档内容回答问题,这是构建知识库的基础之一。
  4. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现对话功能。
  5. ChatGPT 访问速度快且回答效果好的原因:
    • 速度快是因为 GPT 大模型部署的服务器配置高。
    • 效果好是因为 GPT 大模型的训练参数多、数据更优及训练算法更好。

二、您的硬件达标了么

运行大模型需要很高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求:

  1. 生成文字大模型:
    • 最低配置:8G RAM + 4G VRAM
    • 建议配置:16G RAM + 8G VRAM
    • 理想配置:32G RAM + 24G VRAM(如果要跑 GPT-3.5 差不多性能的大模型)
  2. 生成图片大模型(比如跑 SD):
    • 最低配置:16G RAM + 4G VRAM
    • 建议配置:32G RAM + 12G VRAM
  3. 生成音频大模型:
    • 最低配置:8G VRAM
    • 建议配置:24G VRAM

最低配置运行非常慢,不建议使用。但这不妨碍我们亲自实操一遍,以加深对大模型构建知识库底层原理的了解。若想要更顺滑的体验知识库,可以参考文章:胎教级教程:万字长文带你使用 Coze 打造企业级知识库

三、本地知识库进阶

若要更灵活掌控知识库,需额外软件 AnythingLLM。它包含 Open WebUI 的所有能力,并额外支持以下能力:

  1. 选择文本嵌入模型。
  2. 选择向量数据库。

AnythingLLM 安装和配置

安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:

  1. 第一步:选择大模型。
  2. 第二步:选择文本嵌入模型。
  3. 第三步:选择向量数据库。

构建本地知识库

AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。具体步骤:

  1. 首先创建一个工作空间。
  2. 上传文档并在工作空间中进行文本嵌入。
  3. 选择对话模式。AnythingLLM 提供两种对话模式:
    • Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。
    • Query 模式:大模型仅依靠文档中的数据给出答案。
  4. 测试对话。完成上述配置后,即可与大模型进行对话。

四、写在最后

“看十遍不如实操一遍,实操十遍不如分享一遍”。若您对 AI Agent 技术感兴趣,可以联系我或者加我的免费知识星球(备注 AGI 知识库)。

Content generated by AI large model, please carefully verify (powered by aily)

References

手把手教你本地部署大模型以及搭建个人知识库

1.首先访问如下网址当你打开这个页面的时候,会让你登陆,这个时候我们随便使用一个邮箱注册一个账号即可1.和本地大模型进行对话登陆成功之后,如果你已经使用过ChatGPT等类似的大模型对话网站,我相信你对这个页面并不陌生。Open WebUI一般有两种使用方式第一种是聊天对话第二种是RAG能力,也就是可以让模型根据文档内容来回答问题。这种能力就是构建知识库的基础之一如果你的要求不高的话,我们已经搭建了一个本地大模型了,并且通过Web UI实现了和大模型进行对话的功能。相信通过这么一通折腾,你就理解了ChatGPT的信息流,至于为什么ChatGPT的访问速度比我们自己的要快,而且回答效果要好,有两个原因快:是因为GPT大模型部署的服务器配置高好:是因为GPT大模型的训练参数多,数据更优以及训练算法更好如果你想要更加灵活的掌握你的知识库,请接着往下看

手把手教你本地部署大模型以及搭建个人知识库

所有人都会手把手教你部署XX大模型,听起来很诱人,因为不需要科学上网,不需要高昂的ChatGPT会员费用。但是在开启下面的教程之前,我希望你能有个概念:运行大模型需要很高的机器配置,个人玩家的大多数都负担不起所以:虽然你的本地可能可以搭建出一个知识库,但是它不一定能跑的起来下面我通过一组数据来让大家有个感性的认知。以下文字来源于视频号博主:黄益贺,非作者实操生成文字大模型最低配置:8G RAM+4G VRAM建议配置:16G RAM+8G VRAM理想配置:32G RAM+24G VRAM(如果要跑GPT-3.5差不多性能的大模型)生成图片大模型(比如跑SD)最低配置:16G RAM+4G VRAM建议配置:32G RAM+12G VRAM生成音频大模型最低配置:8G VRAM+建议配置:24G VRAM而最低配置我就不建议了,真的非常慢,这个我已经用我自己8G的Mac电脑替你们试过了。讲这个不是泼大家冷水,而是因为我的文章目标是要做到通俗易懂,不希望通过夸大的方式来吸引你的眼球。这是这篇文章的第二次修改,我专门加的这段。原因就是因为好多小伙伴看了文章之后兴致冲冲的去实验,结果发现电脑根本带不动。但是这并不妨碍我们去手把手实操一遍,因为实操可以加深我们对大模型构建的知识库底层原理的了解。如果你想要私滑的体验知识库,可以参考我的另一篇文章:[胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb)好了,废话不多说,下面教程还是值得亲自上手搞一遍的,相信走完一遍流程后,你会对知识库有更深的理解。

手把手教你本地部署大模型以及搭建个人知识库

如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有Open WebUI的能力,并且额外支持了以下能力选择文本嵌入模型选择向量数据库[heading2]AnythingLLM安装和配置[content]安装地址:https://useanything.com/download当我们安装完成之后,会进入到其配置页面,这里面主要分为三步1.第一步:选择大模型1.第二步:选择文本嵌入模型1.第三步:选择向量数据库[heading2]构建本地知识库[content]AnythingLLM中有一个Workspace的概念,我们可以创建自己独有的Workspace跟其他的项目数据进行隔离。1.首先创建一个工作空间1.上传文档并且在工作空间中进行文本嵌入1.选择对话模式AnythingLLM提供了两种对话模式:Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案Query模式:大模型仅仅会依靠文档中的数据给出答案1.测试对话当上述配置完成之后,我们就可以跟大模型进行对话了[heading1]六、写在最后[content]我非常推崇的一句话送给大家:看十遍不如实操一遍,实操十遍不如分享一遍如果你也对AI Agent技术感兴趣,可以联系我或者加我的免费知识星球(备注AGI知识库)

Others are asking
AI本地化部署
AI 本地化部署主要包括以下内容: 目前市面上的 AI 有线上和线下本地部署两种方式。线上部署出图速度快,不吃本地显卡配置,无需下载大模型,但出图分辨率受限;线下部署可自己添加插件,出图质量高,但使用时电脑易宕机,配置不高可能爆显存导致出图失败。 线上和线下平台可结合使用,充分发挥各自优势。线上用于找参考、测试模型,线下作为主要出图工具。具体操作如在在线绘图网站的绘图广场上发现想要的画风,点击创作会自动匹配创作使用的模型、lora 和 tag,截取游戏人物底图将线上算力集中在人物身上,多批次、多数量尝试不同画风得出符合游戏的模型+lora 组合,最后在 C 站下载对应模型到本地加载部署即可生图。 此外,Mistral AI 推出的 Mistral Saba 模型可本地部署,适用于单 GPU,能保障数据隐私。
2025-03-27
我想搭建个人rag知识库,实现本地化部署,可以调用本地大模型去分析知识库的内容进行解答
以下是搭建个人 rag 知识库并实现本地化部署,调用本地大模型分析知识库内容进行解答的详细步骤: 一、通过 Open WebUI 使用大模型 1. 访问相关网址,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,这是构建知识库的基础之一)。 3. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现与大模型对话。ChatGPT 访问速度快且回答效果好的原因在于其服务器配置高、训练参数多、数据更优及训练算法更好。 二、本地知识库进阶 1. 若要更灵活掌控知识库,需使用额外软件 AnythingLLM,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可创建独有 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 三、RAG 是什么 利用大模型搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需对 RAG 有大概了解。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种不同的文档加载器,包括非结构化、结构化数据及代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 文本加载器是将用户提供的文本加载到内存中,便于后续处理。
2025-03-25
deepseek本地化部署
DeepSeek 的本地化部署相关内容如下: 拥有云服务器时的本地部署方法及满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 此外,还包括以下相关内容: 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 Deepseek R1 模型的制作及相关模型比较:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。R1 模型通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。并且 Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 阿里云派平台:以云基础设施和 GPU 算力资源为底层,搭建 AI 框架并做优化,提供一键式快捷部署工具等。与百炼不同,它开放更多自由度,租户数据隔离。很多大模型在此训练,支持多机分布式部署等,既面向企业,也适合个人创业者,不同应用定价有差异。
2025-03-10
进行DeepSeek本地化部署有哪些方法?
进行 DeepSeek 本地化部署的方法如下: 如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。
2025-03-08
我想完全本地化部署deepseek,然后,将我的文档,文本,图片等内容丢给它训练,微调。我要完全本地化,因为我的文档设计隐私。我要免费开源流程。如何实现,
要完全本地化部署 DeepSeek 并使用您的文档、文本、图片等内容进行训练和微调,以下是一些相关的信息和步骤: 1. 模型训练与平台服务: 模型复现与微调:1:1 复现通常没问题,但理解细节并自行制作需要基础知识。有手把手教程、数据集等可帮助 1:1 复现,微调在特定领域可降低幻觉,参数量不变但权重变化。 训练模型的学习方法:先会用再学会训,从训的过程中倒推学习参数调整,这是以用导学的学习方法。 模型回答效果对比:微调后的模型在回答排列组合等问题时,思考前几乎无反馈,答案多为英文且格式稳定,但仍可能答错。 2. 平台服务介绍: 阿里云提供多种解决方案。 百炼是提供多种模型服务的 Maas 平台。 派平台是提供云服务的 PaaS 平台,二者在定位、服务内容和核心差异上有所不同。 3. 关于模型训练与数据集相关问题: 数据资源情况:默认提供公共数据训练集,百派平台能匹配模型和数据,通义开源了不少数据集。 多模态训练:多模态有自身标注方式,如视频拉框标注。 参数量变化:通常训练模型参数量固定,若想改变需改模型层,但可能要从头调。 本地微调框架:可使用 llama factory 等框架,需搭建并部署。 开源数据下载:可在 GitHub、hugging face、Mo Model Scope 等平台获取。 数据集转化:将文档资料转成数据集可先手动形成 SOP,再逐步自动化,初期需大量人力。 4. 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 5. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 6. 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 7. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 请注意,在进行本地化部署和训练微调时,需要具备一定的技术知识和经验,并且要遵循相关的法律法规和道德规范。
2025-03-04
企业本地化部署AI
企业本地化部署 AI 主要包括以下方面: RPA 与财务税务问答机器人:RPA 与 AI 结合具有多种应用和优势。操作流程简单,无需代码,适合小白和无 IT 经验者。有众多应用案例,如奥康和方太在各部门的订单处理等操作中搭建了大量脚本。封装了众多组件,还可通过触发器设置机器人每天工作。数字化包括标准化、自动化、RPA 加 AI 使机器人更智能三个阶段,交付的是动态能力,让用户自己搭建机器人。产品可本地化私有部署,面向企业有费用,私有化部署能保障数据安全,企业大模型可封装调用。RPA 有容错处理方式,但受多种因素影响。 LangChain 与 NVIDIA:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程。支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验。其自托管特性可保障数据安全,提供预构建容器,具有可扩展性。开始使用 NIM 可在 NVIDIA API 目录中获取多种 AI 模型,它是 NVIDIA AI Enterprise 的一部分。 从 LLM 大语言模型、知识库到微信机器人:以 windows10 系统为例,安装环境时先在系统中输入“cmd”打开命令窗口,确认是否有 python 和 pip。若没有则需安装,如安装 python 可下载安装包。部署项目时下载 COW 机器人项目并解压缩。
2025-03-02
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
可不可以续写歌曲
以下是关于续写歌曲的相关内容: 《西游不能停》这首歌在年前创作时使用的是 suno V2 版本,单次最多只能生成 80s 的音乐,无法唱完所有歌词,所以需要续写。 在 web 端,在想要续写的歌曲处点击“continue from this song”;在 discord 中,则点击“⏩continue 1/2”的 icon。 如果续写时正好卡在一个段落的中间,有两个细节需注意: 1. 不要在 lyrics 的最前头加任何 Metatag,否则会被当做一个新的段落,丢失掉连贯性。 2. 如果第一段的结尾最后一个字哪怕没有唱完,只发了一点点音,续写的时候也直接从下一个字开始。例如《西游不能停》的第一段在八戒的“我自有我抱负”这句结束,并且“负”字只发了一半的音,那么续写的时候直接从“尊嘟假嘟....”开始。您可以直接跳到 Part 1 的最后和 Part 2 的开始听。 另外,Suno 操作指北 V2 中提到关于歌词延续的常见问题: 1. 如果歌词被切断,在下一个片段开始,接上它们停止的地方。如果一个单词被切成两半,用下一个单词开始继续的歌词。且不要再次使用被中断的元标签。 2. 如果 Chirp 尝试重复它刚唱过的完整行,或者逐字重复合唱,使用来打断歌曲流程。可以考虑回到之前的片段,重新使用延续功能生成。 还有,在进入一段器乐后,若想让它停止并进入歌词,可以试着在歌词前加入语气词,比如,来提示 Chirp 这里有人声,让它做好过渡准备,有时有用。 此外,“无法生成”或“尝试另一个提示”的错误意味着文本请求被阻止了。被拒绝的提示将退还积分。一个歌曲提示可能因为多种原因被阻止: 1. 歌词受版权保护。 2. 音乐风格或歌曲描述使用了真实的乐队或艺术家名称。 3. 歌词包含违规词汇。 4. 实际积分用尽了,但网页没有同步(刷新页面)。 5. 在默认模式或“生成随机歌词”按钮下,AI 无法理解如何将请求转化为歌曲。
2025-01-15
可不可以用AI制作一个自己专属的聊天机器人,能模仿自己喜欢或敬佩的角色?
可以用 AI 制作一个自己专属的聊天机器人,能模仿自己喜欢或敬佩的角色。以下是一些相关信息: 使用大型语言模型可以构建自定义聊天机器人,为餐厅扮演 AI 客户服务代理或 AI 点餐员等角色。 是一款基于 LLM 的聊天机器人网站,用户可以与预先创建的角色交流,也可以自己创作角色。 许多初创公司正考虑使用生成性 AI 来创建可信角色,目前有数百家用类似 GPT3 的语言模型驱动的公司正在构建通用聊天机器人。 这些信息表明,利用 AI 技术制作专属聊天机器人是可行的,并且有多种选择和应用场景。
2024-07-03
个人微信接入ai合规吗
个人微信接入 AI 存在一定风险和合规问题。微信端的这种接入属于非常规使用,可能会有封号危险,不建议使用主力微信号接入。 在操作过程中,需要注意以下几点: 1. 接入大模型 API 实现时需要单独付费。 2. 对大模型生成的内容要注意甄别,确保所有操作均符合相关法律法规的要求。 3. 禁止将此操作用于任何非法目的。 4. 处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 此外,关于将 AI 接入微信的实现步骤,可参考以下内容: 1. 注册 AI 模型: 进入智普 AI:https://open.bigmodel.cn/ 。 点击开始使用,注册登录。 按照要求进行认证,点击控制台,查看 API key,添加新的 API key 并复制保存。 2. 注册云服务器: 新用户点击去注册腾讯云: 。 微信扫码注册,首次注册选择第一个。 选择地域和镜像(宝塔 8.1.0),点击立即试用。 进入腾讯云服务台,登录(可微信扫码登录)。 复制 sudo/etc/init.d/bt default 并粘贴回车,保存输出内容。 返回服务器控制台,在防火墙菜单栏添加规则,手动输入相关内容并确定。
2025-03-09
我希望通过ai做好我企业内部的智能巡检。巡检内容主要是针对企业的门店的招牌门头是否合规给出意见。主要合规性检查包括:Logo是否符合公司的设计标准;门头的颜色搭配、尺寸是否符合标准(还要提醒褪色),请问大体应该是各什么思路?
很抱歉,飞书知识库中没有与您关于通过 AI 做好企业内部门店招牌门头智能巡检思路的直接相关内容。但一般来说,您可以考虑以下思路: 1. 数据采集:使用图像采集设备获取门店招牌门头的图像数据。 2. 图像识别技术:运用 AI 的图像识别能力,对采集到的图像进行分析,识别 Logo、颜色、尺寸等元素。 3. 建立标准模型:根据公司设计的标准,建立合规性的模型,以便与采集到的图像进行对比。 4. 智能判断:通过算法判断门头的各项元素是否符合标准,包括 Logo 是否与标准一致,颜色搭配、尺寸是否在规定范围内,以及是否存在褪色等问题。 5. 生成报告和提醒:根据判断结果生成详细的报告,并及时提醒相关人员进行整改。
2025-02-25
合规性审查
以下是关于合规性审查的相关内容: 套壳产品的合规管理策略: 1. 深入了解相关法律法规:企业应熟悉涉及知识产权、消费者权益保护、产品安全、市场监管等方面的法律法规,确保产品设计、生产、销售和营销活动符合这些法律法规。 2. 尊重知识产权:对于采用或参考他人作品的产品,确保已获得必要的许可和授权,避免侵犯版权、商标权、专利权等。 3. 进行产品合规性审查:在产品开发阶段,进行合规性审查,确保产品设计、材料和功能符合所有适用的行业标准和法规。 4. 建立风险管理机制:制定风险评估和管理流程,定期评估产品的合规性风险,并制定相应的风险缓解措施。 5. 加强质量控制:确保产品经过严格的质量控制流程,符合消费者安全和产品质量的标准。 6. 透明和诚实的营销:在产品推广和营销中,确保所有声明都是准确、透明和不具误导性的。 7. 建立监督和审计流程:定期对产品和业务流程进行内部审计,以确保持续的合规性。 8. 员工培训和意识提升:对员工进行合规和道德培训,确保他们理解公司政策和相关法律法规,以及他们在维护合规性方面的责任。 9. 建立应急响应计划:制定应对潜在合规问题和危机情况的应急计划,包括迅速反应机制、责任分配、沟通策略等。 10. 与法律顾问合作:在关键的产品开发和市场推广阶段,与法律专家合作,以确保所有操作符合法律要求。 AI 陪伴产品的合规措施: 为了确保 AI 陪伴产品的合规性,制造商和开发者需要采取一系列措施。这包括遵循数据保护法规,设计安全的软硬件,确保儿童用户的隐私和安全,提供产品的透明度和可解释性,避免偏见和歧视,确保用户充分理解他们的权利和义务,考虑产品对用户心理健康和社会行为的影响,定期对产品进行监测和更新,进行合规性审核和认证,以及提供用户教育和支持服务。 金融服务业中生成式 AI 对合规性的作用: 1. 高效筛查:生成式 AI 模型可以迅速将任何个体在不同系统中的关键信息汇总并呈现给合规官员,使合规官员能更快地得出交易是否存在问题的答案。 2. 更准确地预测洗钱者:根据过去 10 年的可疑活动报告(SARs)进行训练的模型,无需明确告诉模型洗钱者是什么,AI 可以用来检测报告中的新模式,并创建其自己对洗钱者构成的定义。 3. 更快的文档分析:合规部门负责确保公司的内部政策和程序得到遵守,并且遵循监管要求。生成式 AI 可以分析大量的文档,如合同、报告和电子邮件,并标记需要进一步调查的潜在问题或关注区域。 4. 培训和教育:生成式 AI 可以用于开发培训材料,并模拟真实世界的场景,以教育合规官员关于最佳实践以及如何识别潜在风险和不合规行为。 5. 新进入者可以使用来自数十个机构的公开可用合规数据进行自我启动,并使搜索和综合变得更快、更便捷。较大的公司从多年收集的数据中受益,但他们需要设计适当的隐私功能。合规长期以来一直被视为一个由过时技术支持的不断增长的成本中心。生成式 AI 将改变这一点。 总之,套壳产品虽可能带来短期经济效益,但长期潜在风险不容忽视,企业应采取全面合规管理策略。AI 陪伴产品在带来便利的同时也带来挑战,制造商和开发者须承担社会责任确保合规性和安全性。金融服务业中生成式 AI 能改善合规性,但也需注意隐私功能设计等问题。
2025-02-22
智能合规性分析
以下是关于智能合规性分析的相关内容: 在金融服务业中,生成式 AI 能带来更好的合规性,具体表现为: 1. 高效筛查:迅速汇总个体在不同系统中的关键信息,让合规官员更快得出交易是否存在问题的答案。 2. 更准确地预测洗钱者:根据过去 10 年的可疑活动报告训练模型,创建对洗钱者构成的定义。 3. 更快的文档分析:分析大量文档,标记潜在问题或关注区域。 4. 培训和教育:开发培训材料,模拟真实场景,教育合规官员。 欧洲议会和欧盟理事会规定了人工智能的统一规则,包括成员国的市场监督管理机关和委员会应能提议联合行动,促进合规、查明不合规情况等。对于建立在通用人工智能模型基础上的人工智能系统,明确了国家和联盟一级的责任和权限。 未来,拥抱生成式 AI 的合规部门有望阻止每年在全球范围内非法洗钱的巨额资金。如今,合规软件主要基于“硬编码”规则,存在诸多问题,生成式 AI 可能带来改变。
2025-01-27
AI合规审核,产品包装信息如何借助AI进行智能审核
利用 AI 进行产品包装信息的智能审核,可以参考以下类似的方法和步骤: 1. 数据收集与分析:利用 AI 工具收集和分析大量的产品包装信息数据,包括市场上已有的成功案例、相关法规要求等,以了解常见的模式和问题。 2. 关键词提取与匹配:通过 AI 提取产品包装中的关键信息,并与合规要求的关键词进行匹配,快速筛选出可能存在问题的部分。 3. 图像识别与内容审查:运用 AI 图像识别技术审查包装上的图片、图标等元素,确保其符合相关规定,同时对文字内容进行深度分析。 4. 法规库对接:将 AI 系统与最新的法规库进行对接,实时更新审核标准,保证审核的准确性和及时性。 5. 风险评估与预警:AI 可以根据分析结果评估包装信息的合规风险,并及时发出预警,提示修改。 6. 个性化审核模型:根据不同产品类型和行业特点,训练个性化的 AI 审核模型,提高审核的针对性和准确性。 7. 反馈与优化:根据审核结果和用户反馈,不断优化 AI 模型,提高审核的质量和效率。
2025-01-13
AI合规审核,产品保证信息如何借助AI进行只能审核
以下是关于借助 AI 进行产品保证信息合规审核的一些建议: 1. 建立用户的举报和响应机制:在网站建立相关投诉举报机制,如设置侵权举报按钮,简化举报流程,并建立快速响应团队,负责评估收到的侵权举报,并在必要时采取法律行动。 2. 对用户进行潜在风险提示,明确用户责任与义务:在用户协议中详细列出禁止侵权行为的条款,并明确违反协议的法律后果。通过用户教育活动,如在线研讨会、指南和常见问题解答,提高用户对版权的认识。 3. 企业应当深入钻研相关法律法规,深化版权合规流程: 定期组织知识产权法律培训,确保团队成员对相关法律法规有深刻理解,涵盖适用于 AI 生成内容的版权法、AI 创新的专利申请策略,以及对国际知识产权法律差异的理解等内容。 建立专门的法律合规团队,其职责不仅是监控,还需主动解释新法律变动对公司运营的影响,包括对新立法进行影响分析、从法律角度对产品开发提供建议,以及制定内部政策以指导公司对法律更新的响应。 制定严格的数据来源审核流程,确保所有用于训练 AI 的数据均获得明确的版权授权。对于 AI 生成的内容,应实行版权审核机制,以确保这些内容要么是原创的,要么已经得到授权使用。 4. 建立企业内容过滤与监控系统:开发或采用先进的内容识别技术,如图像识别和文本匹配,自动识别并过滤潜在的侵权内容。同时,建立内容监控小组,负责人工审核由用户生成的内容,确保过滤系统的准确性。通过结合使用技术和人工审核,提高识别侵权内容的能力,保护企业和用户免受侵权风险。
2025-01-13