Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

音乐识别

Answer

以下是一些与音乐识别相关的人工智能音频初创公司:

  • AIMS:人工智能驱动的音乐相似性搜索和自动标记,适合以音乐发现为业务的人。
  • FeedForward:用于音频和声音目录的直观音频搜索引擎。
  • Aimi:发现将音乐从歌曲和播放列表束缚中解放出来的艺术家。
  • Utopia Music:每次播放公平报酬。
  • Musiio(被 SoundCloud 收购):使用人工智能帮助自动化工作流程。
  • niland(被 Spotify 收购):构建人工智能驱动的音乐应用程序。
  • cyanite:用于音乐标记和相似性搜索的人工智能。
  • musicube(被 SongTradr 收购):B2B AI 音乐元数据服务,例如自动标记、元数据丰富和语义搜索。
  • Musixmatch:基于歌词的音乐发现、推荐和搜索的算法和工具。
  • hoopr:寻找最好的音乐,讲述更好的故事,扩大听众。人工智能驱动的引擎可帮助找到正确的配乐。
  • Pex:音乐识别和版权合规性。音频指纹、大规模翻唱识别。
  • SONOTELLER:AI 音乐分析,包括歌词摘要、主题提取和音乐特征。

此外,关于 GPT-4 在音乐方面的情况:其训练数据中包含以 ABC 符号表示的音乐信息。当被指示生成简短曲调时,能够生成有效的 ABC 符号,有清晰结构、一致节拍和音符模式,但似乎未获得理解和声的技能。用音乐术语描述曲调时,能给出结构的技术描述,但和声和和弦描述与音符不一致。能按指示改写旋律,如将上升序列改为下降序列,将曲调转换为二重唱并添加低音声部,但两个声部之间缺乏和声。总之,能生成有效 ABC 符号曲调并解释和操纵结构,但无法产生非平凡形式的和声,也无法以 ABC 符号产生知名曲调或识别这些曲调。

Content generated by AI large model, please carefully verify (powered by aily)

References

人工智能音频初创公司列表

[AIMS](https://www.aimsapi.com/)-人工智能驱动的音乐相似性搜索和自动标记,适合任何以音乐发现为业务的人。[FeedForward](https://www.figaro.ai/)-用于音频和声音目录的直观音频搜索引擎。[Aimi](https://www.aimi.fm/)-发现将音乐从歌曲和播放列表的束缚中解放出来的艺术家。[Utopia Music](https://utopiamusic.com/)-每次播放公平报酬。[Musiio](https://www.musiio.com/)(被SoundCloud收购)-使用人工智能帮助自动化您的工作流程。[niland](https://niland.io/)(被Spotify收购)-构建人工智能驱动的音乐应用程序。[cyanite](https://cyanite.ai/)-用于音乐标记和相似性搜索的人工智能。[musicube](https://csteinmetz1.github.io/ai-audio-startups/)(被SongTradr收购)-B2B AI音乐元数据服务,例如自动标记、元数据丰富和语义搜索。[Musixmatch](https://www.musixmatch.com/)-基于歌词的音乐发现、推荐和搜索的算法和工具。[hoopr](https://hoopr.ai/)-寻找最好的音乐,讲述更好的故事,扩大你的听众。人工智能驱动的引擎可帮助找到正确的配乐。[Pex](https://pex.com/)-音乐识别和版权合规性。音频指纹、大规模翻唱识别。[SONOTELLER](https://sonoteller.ai/)-AI音乐分析,包括歌词摘要、主题提取和音乐特征。

报告:GPT-4 通用人工智能的火花

该模型的训练数据中也包含以ABC符号表示的音乐信息。这是一种使用字母、数字和符号来紧凑而易读地表示音高、持续时间、和弦和其他元素的系统。我们有兴趣探索模型从这种数据中获得了多少音乐技能,如创作新的旋律、转换现有旋律以及理解音乐模式和结构。当被指示生成一个简短的曲调(下图)时,模型能够生成有效的ABC符号。这个曲调有一个清晰的结构,小节之间的拍子一致,音符遵循逐渐上升和下降的模式。曲调还使用了一组一致的音符,节奏有重复的模式。然而,模型似乎没有获得理解和声的技能。事实上,在生成的曲调中,连续的音符几乎总是相邻的(即,跟在C后面的音符通常是B或D),在测试了10个生成的曲调后,我们无法提取任何清晰的和弦或琶音。

报告:GPT-4 通用人工智能的火花

然后我们让模型用音乐术语描述曲调。它能够成功地以重复、旋律上升或下降的部分和节奏为基础,给出结构的技术描述,但是它似乎没有将和声和和弦的描述与音符保持一致(事实上,它指的是相邻的音符序列,它们不构成有效的和弦,而是琶音)。随后,我们让模型用两种方式改写旋律:首先,我们指示将某个上升序列改为下降序列,它成功地做到了;然后我们让模型将曲调转换为二重唱,并添加一个低音声部,模型成功地用与旋律相容的节奏扩展了ABC符号的第二个谱表,并以较低的八度演奏,但是两个声部之间缺乏和声。总之,该模型能够生成有效的ABC符号曲调,并在某种程度上解释和操纵它们的结构。然而,我们无法让模型产生任何非平凡形式的和声。需要注意的是,ABC符号并不是一个非常广泛使用的格式,事实上,该模型甚至无法以ABC符号产生最知名的曲调(如欢乐颂、致爱丽丝或绿袖子,这些曲调在网络上都以该格式丰富存在),也无法识别这些曲调。

Others are asking
如何识别网页内容
识别网页内容通常可以通过以下步骤实现: 1. 内容识别:使用智能算法分析网页的 HTML 结构,确定网页的主要内容区域。 2. 文本提取:在识别出内容区域后,提取这些区域的文本内容,包括从 HTML 标签中获取可见文本,同时忽略脚本、样式和其他无需翻译的代码。 3. 预处理:对提取出的文本进行处理,清除不必要的空格、特殊字符和格式信息,进行标准化。 4. 翻译调用:将预处理后的文本拼接到 Prompt 模板中请求相关模型的 API 进行翻译。 5. 结果整合:翻译完成后,将原文和译文对照整合回网页、字幕中,常见的展示形式有原文保持不变,译文以悬浮框、下划线注释或平行文本呈现。 6. 用户界面交互:用户可通过鼠标悬停、点击等操作控制翻译的显示与否,工具会根据用户操作实时显示或隐藏译文。 另外,在获取网页内容时,初版提示词实验中对大模型对话产品的外链解析能力依赖较大,但这种方式易受平台反爬机制制裁。转换思路,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时,可拿着初版提示词询问 AI 来确定需要插件获取哪些网页元素。例如 SeeAct 能力可以在多种不同网站上识别网页上的各种元素,执行不同任务。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
人脸识别软件
以下是为您整合的关于人脸识别软件的相关信息: 在“【已结束】AI 创客松 参与同学自我介绍和分类”中,Dylan 擅长人脸识别算法和动作捕捉产品。 在“SmartBotX 模块化桌面机器人——说明文档”中,桌面客户端提供面部识别或跟踪功能的展示,可能用于安全监控、用户识别或交互式体验。 在“14、LayerStyle 副本”中,使用 YoloV8 模型可以检测人脸、手部 box 区域或者人物分割,支持输出所选择数量的通道。同时,Mediapipe 模型可以检测人脸五官,分割左右眉、眼睛、嘴唇和牙齿。
2025-04-12
本地人脸识别工具
以下为一些本地人脸识别工具的相关信息: PersonMaskUltra:为人物生成脸、头发、身体皮肤、衣服或配饰的遮罩。具有超高的边缘细节,模型代码来自。节点选项包括:face(脸部识别)、hair(头发识别)、body(身体皮肤识别)、clothes(衣服识别)、accessories(配饰识别)、background(背景识别)、confidence(识别阈值)、detail_range(边缘细节范围)、black_point(边缘黑色采样阈值)、white_point(边缘黑色采样阈值)、process_detail(设为 False 将跳过边缘处理以节省运行时间)。还有 V2 升级版 PersonMaskUltraV2,增加了 VITMatte 边缘处理方法,在 PersonMaskUltra 的基础上改变了 detail_method(边缘处理方法)、detail_erode(遮罩边缘向内侵蚀范围)、detail_dilate(遮罩边缘向外扩张范围)。 YoloV8Detect:使用 YoloV8 模型检测人脸、手部 box 区域,或者人物分割。支持输出所选择数量的通道。需在下载模型文件并放到 ComfyUI/models/yolo 文件夹。节点选项包括:yolo_model(yolo 模型选择)、mask_merge(选择合并的遮罩)。输出包括 mask(输出的遮罩)、yolo_plot_image(yolo 识别结果预览图)、yolo_masks(yolo 识别出来的所有遮罩)。 MediapipeFacialSegment:使用 Mediapipe 模型检测人脸五官,分割左右眉、眼睛、嘴唇和牙齿。节点选项包括:left_eye(左眼识别开关)、left_eyebrow(左眉识别开关)、right_eye(右眼识别开关)、right_eyebrow(右眉识别开关)、lips(嘴唇识别开关)、tooth(牙齿识别开关)。 此外,关于 AI 换脸,有开源免费的解决方案 facefusion: 本机解决方案:需要 python 环境及安装多个依赖软件,对编程知识有一定要求,且运行推理计算速度依赖 GPU,本地计算机若无 GPU 或 GPU 显存较小,执行速度缓慢,不推荐本地化安装。 云服务解决方案:可利用云厂商如阿里云的 PAI 和 AutoDL 已提供的大模型运行环境和计算能力,需产生一定费用。以 AutoDL 为例,注册后在算力市场中选择可接受价格的算力服务器,建议选取 GPU 配置更高的算力设备。通过在算法社区查找 facefusion 镜像,选择合适的镜像启动 GPU 服务器。
2025-04-12
人脸识别
以下是关于人脸识别的相关信息: SmartBotX 模块化桌面机器人的桌面客户端提供面部识别或跟踪功能的展示,可能用于安全监控、用户识别或交互式体验。 设计:AIGC 世代的设计新范式 ver 东华.pdf 中提到了人脸识别相关技术,如 MTCNN、Centerface、LUVLi Face Alignment 等人脸检测和人脸对齐技术,以及 InsightFace 等人脸识别技术。 LayerStyle 副本中的 PersonMaskUltra 节点具有脸部、头发、身体皮肤、衣服、配饰和背景等的识别功能,还包括识别阈值、边缘细节范围、黑色和白色采样阈值等节点选项。PersonMaskUltraV2 是其升级版,增加了 VITMatte 边缘处理方法,并对边缘处理做了相关改变。
2025-04-12
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
音乐生成
目前在 AI 音乐生成领域,主要方式是“提示词+歌词”。具有代表性的产品有 Suno 和 Udio,Suno 在 a16z 最新统计的生成式 AI 网页端产品排名位居 Top5,半年内上升了 31 个名次,能生成 4 分钟的歌曲;Udio 排名 Top33,能生成 2 分钟的歌曲,但中文发音还有待提高。近半年二者丰富了一些可控性,如上传音频作为生成参考以及支持片段修改。 除此之外,还有类似的原生工具如海绵音乐、MusicFX,以及其它赛道的产品如剪映、TikTok、Mubert、唱鸭、网易天音等,通过集成生成能力来丰富功能提升体验。 AI 音乐生成的实际应用归纳为 5 个场景,生成技术在音乐视频和功能型音乐创作中正在发挥商业价值,社交娱乐和业余音乐创作场景未产生明确价值,专业创作领域尚待 AI 融合进工作流。 ElevenLabs 推出了自己的音乐生成模型 ElevenLabs Music,并展示了早期预览版生成的歌曲,该模型可直接通过文本提示生成完整带歌词音乐,歌曲风格涵盖流行摇滚、乡村、爵士、当代 R&B 和独立摇滚等多样化类型。详细内容,更多试听:https://xiaohu.ai/p/7687
2025-04-10
AI音乐
AI 音乐相关内容如下: 在剪映中使用 AI 音乐: 点击 AI 音乐后,可选择人声歌曲或纯音乐。 描述想要的音乐风格,如民谣、流行、嘻哈、国风等。 若选人声歌曲,可自己填写歌词或让 AI 代写,通过智能歌词按钮输入简单词语给 AI 提示即可生成歌词。 音乐库提供各种风格的音乐,选择合适的添加到音轨。 音效库可通过搜索框输入关键词,如开门声,试听后添加到音轨。 人工智能音频初创公司: (被 Apple 收购):音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :由 AI 驱动的软件引擎,可生成音乐,能对手势、动作、代码或其他声音作出反应。 :全球最大的音乐教育平台。 :用于创作歌曲和音频录制的应用程序。 :提供无缝录音室体验的一体化在线协作平台。 :专业音频、语音、声音和音乐的扩展服务。 :视频编辑的音频解决方案。 :由 AI 驱动的音乐工作室。 :通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 :AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 :为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 :为创作者提供的在线音乐软件,包括音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。 AI 生成音乐的工具: 是利用人工智能技术,特别是机器学习和深度学习算法,来创作、编排和生成音乐的软件平台。 能够分析大量音乐数据,学习音乐模式和结构,根据用户输入或特定指令创作新音乐作品。 推荐产品: Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。 Suno AI:是一款革命性的人工智能音乐生成工具,通过先进的深度学习技术,将用户输入转化为富有情感且高质量的音乐作品。
2025-04-09
怎么用AI音乐变现
以下是关于用 AI 音乐变现的一些途径和相关信息: 1. 了解 AI 音乐的流派和 prompt 电子书,例如格林同学做的翻译。 2. 利用相关平台,如 LAIVE:这是一个利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台,使用者可以选择自己喜欢的类型和情调,上传参考音源,AI 可以通过分析生成音乐。并且可以选择主唱和修改歌词,目前为开放测试阶段。输入促销代码 LAIVEcreator 可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。链接:https://www.laive.io/ 3. Combobulator 插件:DataMind Audio 推出的基于 AI 的效果插件,利用神经网络通过样式转移的过程重新合成输入音频,从而使用你自己的声音重现其他艺术家的风格。链接:https://datamindaudio.ai/ 4. 在游戏制作和发行环节使用 AI 生成音乐:AI 生成音乐作为音乐资产是可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。 目前 AI 生成音乐存在 2 种主流技术路线:基于乐理规则的符号生成模型和基于音频数据的音频生成模型。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。
2025-03-30
国内有什么好的音乐AI可以用即兴哼唱旋律去写歌
以下是国内一些可用即兴哼唱旋律写歌的音乐 AI 相关信息: 《We Are The One》的创作思路: 只有词和意向风格:先确定最核心情绪所在段落,用 AI 生成最佳结果,以此作为动机音轨扩展创作。 只有词和一小段自己哼唱的旋律:上传哼唱旋律,让 AI 扩展出喜欢的风格,作为动机音轨继续创作。 已有 midi 作曲:挂载音源导出,在 AI 帮助下丰满包含主歌、副歌等主要段落的核心音轨,然后继续扩展出其他段落完成全曲创作。 已有简单录音小样:利用 REMIX 优化音质与编曲结构,利用 AI 尝试不同曲风版本,找到最喜欢的风格制作成核心音轨,进而完成全曲创作。 Suno 和 Udio 推出的上传音频文件生成音乐的功能: 精确控制每首歌的速度(Tempo),无需背绕口的速度词,可精确控制想要的 BPM。 控制旋律(Melody),通过自己制作简单旋律让 AI 补全并贯穿整首歌,实现旋律与速度的一谱变速,节省大量 Roll 旋律的时间。 选择配器(Instrumentation),按想法选乐器,减少提示词中乐器不灵光的情况,也可选择特殊音色。 进行合成(synthesizer),当有两支 BPM 相同、调性相同的音乐时,可尝试更多拆分组合和有趣效果。 节省上传音频的点数消耗后,点数可用于:用提示词多 Roll 一些和流派、心情、场景相关的曲子,减少限制让 AI 音乐发挥更多创造力,把好旋律存起来作为制作素材;用于 roll 更多细节调整部分,如让某段曲子升调,提升作品品质。
2025-03-29
AI音乐
AI 音乐相关内容如下: 在 AI 短片配音方面,AI 音乐的界面直观,您可以选择人声歌曲或纯音乐,然后描述想要的音乐风格,如民谣、流行、嘻哈、国风等。若选择人声歌曲,还可自己填写歌词或让 AI 协助创作,通过智能歌词按钮输入简单词语给 AI 提示即可。此外,还有音乐库选项,剪映提供了各种风格的音乐供您选择添加到音轨。音效库方面,比如搜索“开门声”,试听合适的音效后点击“+”号添加到音轨。 以下是一些人工智能音频初创公司: (被 Apple 收购),其音乐帮助品牌与受众建立更深层次的连接。 ,被称为下一代音乐制作人。 ,其由 AI 驱动的软件引擎可以生成音乐,能对手势、动作、代码或其他声音作出反应。 ,是全球最大的音乐教育平台。 ,用于创作歌曲和音频录制的应用程序。 ,提供无缝录音室体验的一体化在线协作平台。 ,提供专业音频、语音、声音和音乐的扩展服务。 ,视频编辑的音频解决方案。 ,由 AI 驱动的音乐工作室。 ,通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 ,AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 ,为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 ,为创作者提供在线音乐软件,包括音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。 推荐的 AI 生成音乐的工具: Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。 Suno AI:是一款革命性的人工智能音乐生成工具,它通过先进的深度学习技术,能够将用户的输入转化为富有情感且高质量的音乐作品。 内容由 AI 大模型生成,请仔细甄别。
2025-03-27