Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

技术服务 大模型 研究报告

Answer

以下是为您提供的关于技术服务大模型研究报告的相关内容:

  1. 《质朴发言:视觉-语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》
    • 原文链接:https://mp.weixin.qq.com/s/dYLqW8dNOcQw59UtQwXNgA
    • 来源:质朴发言
    • 发文时间:2024.01.22
    • 内容:近期生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉-语言模型,优化了从视觉输入到语言输出的转换过程。报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。报告包括视觉分析技术、图像-语言模型、视频-语言模型、LLM 多模态 Agent、应用场景、未来发展方向、References 和附录等内容。应用场景包括多模态内容理解与处理、智能交互与自动化、具身智能、未来发展趋势(2024-?)、视频生成模型 mapping 等。未来发展方向包括技术路径利用预训练 LLM 进行指令调整,应用场景赋予机器理解多模态的能力。
  2. 《小 A-技术开发/大模型 知识库文章索引》
    • 作者:[aaronxic]
    • 文章:
      • 《Perplexity 指标究竟是什么?》:作者从自己实际入坑的经验出发,尝试总结梳理出新手友好的 transformer 入坑指南。计划从算法 1:NLP 中的 transformer 网络结构、算法 2:CV 中的 transformer 网络结构、算法 3:多模态下的 transformer 网络结构、训练:transformer 的分布式训练、部署:transformer 的 tvm 量化与推理五个方面对 transformer 进行介绍。
      • 《初探 LLM 基座模型》:主要介绍 LLM 基座模型里常见的 3 种 transformer 架构,encoder-only,encoder-decoder 和 decoder-only。
      • 《ChatBot 是怎么炼成的?》:介绍了 LLM 基座大模型下游应用 ChatBot 的研发过程,在介绍 ChatBot 之前,先介绍了 LLM 在辅助编程方面的应用,包括 Codex 和 AlphaCode 两个奠基性工作。
  3. 2024 年 9 月 26 日的相关报告

您可以根据具体需求,进一步查阅相关报告获取更详细的信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

质朴发言:视觉-语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期

原文链接:https://mp.weixin.qq.com/s/dYLqW8dNOcQw59UtQwXNgA来源:质朴发言发文时间:2024.01.22近期,生成式AI领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于Transformer架构的视觉-语言模型,这些模型优化了从视觉输入到语言输出的转换过程。报告的范围专注于视觉和语言之间的交互,而不考虑单纯的视觉到视觉的计算机视觉任务。综上,本报告旨在为所有关心大模型事业的伙伴,提供一个全面而深入的视角,以理解视觉-语言理解模型的发展历程、现状及未来趋势。?目录建议结合要点进行针对性阅读。?一、视觉分析技术1、Transformer视觉模型优点2、Transformer视觉模型的局限二、图像-语言模型三、视频-语言模型四、LLM多模态Agent五、应用场景1、多模态内容理解与处理2、智能交互与自动化3、具身智能4、未来发展趋势(2024-?)5、视频生成模型mapping六、未来发展方向1、技术路径而言:利用预训练LLMs进行指令调整2、应用场景而言:赋予机器理解多模态的能力七、References八、附录

小A-技术开发/大模型

|标题|备注|作者|链接|发布日期|附件(1)|单选||-|-|-|-|-|-|-||Perplexity指标究竟是什么?|笔者小A从自己实际入坑的经验出发,尝试总结梳理出新手友好的transformer入坑指南。一方面能倒逼自己理清知识脉络,另一方面希望能让后面的新同学少走弯路,更快拿到自己想要的知识。<br>本系列计划从以下五个方面对transformer进行介绍<br>算法1:NLP中的transformer网络结构<br>算法2:CV中的transformer网络结构<br>算法3:多模态下的transformer网络结构<br>训练:transformer的分布式训练<br>部署:transformer的tvm量化与推理|[aaronxic](https://www.zhihu.com/people/aaronxic)|[(1)Perplexity指标究竟是什么?](https://ywh1bkansf.feishu.cn/wiki/E1pjwy9OMirKTdkFQDEcDDlfnTh)|2023/07/05||||初探LLM基座模型|本篇内容主要介绍LLM基座模型里常见的3种transformer架构,encoder-only,encoder-decoder和decoder-only|[aaronxic](https://www.zhihu.com/people/aaronxic)|[(2)初探LLM基座模型](https://ywh1bkansf.feishu.cn/wiki/UU9pwtOFtiKIqAkQiSVc3Zdun7e)|2023/07/06||||ChatBot是怎么炼成的?|本文介绍了LLM基座大模型下游应用ChatBot的研发过程。在介绍ChatBot之前,作者先介绍了LLM在辅助编程方面的应用,主要包括Codex和AlphaCode两个奠基性工作。Codex提出了编程数据集和pass@k指标,并采用了2阶段训练方式。文章还介绍了Codex的局限性和辅助编程问题定义。|[aaronxic](https://www.zhihu.com/people/aaronxic)|[(3)ChatBot是怎么炼成的?](https://ywh1bkansf.feishu.cn/wiki/HRnLw588DiTDLPkSTXCcKit8nbD)|2023/07/08|||

4.4 历史更新

中国信通院和阿里云计算:《[大模型安全研究报告(2024年)](https://waytoagi.feishu.cn/record/EZuorutaGepdj9cltAlc7rUenaf)》探讨了大模型技术的发展、面临的安全挑战以及在安全领域的应用潜力。报告指出,大模型技术正推动人工智能向通用强智能发展,但同时也引入了新的安全风险,如模型“幻觉”和指令注入攻击。为应对这些挑战,国际组织和主要国家正在制定治理原则和法律法规。其它一些报告发布在[研究报告板块](https://waytoagi.feishu.cn/wiki/WvhZwk16WiEnSvk8AcpcdZetnMe)和[知识星球](https://t.zsxq.com/18DnZxlrl):科大讯飞:《[2024智能教育发展蓝皮书](https://waytoagi.feishu.cn/record/PNA5r7ZPgeMNBOcsHSGcxy85nxe)》智能小巨人科技:《[2024年AI商业观察Vol.04:大模型不止价格战](https://waytoagi.feishu.cn/record/VjhMr6VWaepIr5charycGLDNnTf)》电子发烧友:《[2024年AI服务器和AI PC趋势解读](https://waytoagi.feishu.cn/record/A8aDrwJhQerbzwcBdVLcLo3dnKd)》

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
如何本地部署大模型,如何选择是否使用云服务商
以下是关于本地部署大模型以及选择是否使用云服务商的相关内容: 本地部署大模型的主要步骤: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 以 SDXL 为例的本地部署步骤: 1. SDXL 的大模型分为两个部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。 以 LLM 大语言模型为例的本地部署步骤: 1. 下载并安装 Ollama,点击进入根据电脑系统下载 Ollama:https://ollama.com/download ,下载完成后,双击打开,点击“Install”,安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 总的来说,部署大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-14
AI服务器配置
以下是关于 AI 服务器配置的相关内容: 对于 Coze AI 机器人对接微信的服务器配置: 1. 如果按照上一篇教程操作,此次配置只需修改容器编排模板。最新的容器编排模板如下,同时提供无描述性的参考配置方便新手直接参考使用。 2. 若之前没有容器编排模板,新建一个即可,新建和修改逻辑类似。 3. 更新后的编排模板,若之前创建过相似机器人容器编排服务,建议先删除以防冲突,删除步骤如下。 4. 基于新的编排模板创建新的容器编排,然后启动服务。 5. 服务启动成功后,进入 COW 服务扫码绑定微信机器人,具体步骤参考上一篇入门教程。 对于视频相关的 AI 服务器配置: 1. 购买服务器:直接点击去购买:https://buy.cloud.tencent.com/lighthouse?blueprintType=APP_OS&blueprintOfficialId=lhbpr8j2ftq0&regionId=8&zone=apbeijing3&bundleId=bundle_rs_mc_med1_02&loginSet=AUTO&from=lhconsole ,并根据以下配置购买。 2. 购买并付款完成后,回到服务器“控制台”。 3. 点击服务器卡片空白处添加防火墙,添加 8887、8080 端口。 4. 点击右上角“登录”按钮,扫码验证后在命令行窗口中操作,注意复制粘贴代码的方式和命令执行完毕的标志。 5. 在命令行中依次输入相关命令。 6. 保存并打开外网面板地址,输入账号和密码。
2025-04-10
如何利用AIGC技术给企业提供咨询服务
利用 AIGC 技术为企业提供咨询服务可以从以下几个方面入手: 1. 招募具备实战经验的 AI 讲师与咨询专家:工信部大数据产业人才基地依托丰富的企业渠道资源,计划为传统行业客户提供 AI 技术培训、场景化咨询与解决方案落地服务,并面向社区招募相关人才。 2. 开展公开课:针对 B 端渠道持续展开公益科普,形式免费,部分渠道有一定经费,内容为企业端的 AI 应用场景案例和 AI 通识类的科普分享,目的是建立与企业渠道之间的信任,构建收费培训/咨询的转化通道。 3. 组织线下培训:通过培训转化或直接招生,开设两天一夜、三天两夜的培训班,一般 50 人以上开班,建议 100 人。 4. 提供咨询陪跑服务:包括 AI 营销能力搭建,企业客服机器人搭建、企业端内容分析智能体搭建、企业运营数据大盘搭建、无人直播/数字人直播间搭建等。 此外,一些成功的案例和产品也可供参考: 1. 为阿里妈妈、阿里国际、搜狗、途虎、太平洋保险、哔哩哔哩、滴滴、百度金融、浦发银行、花旗银行、振华重工、中国电信、中国移动、中兴通讯、SMG 等企业提供设计咨询与训练。 2. Runway 上线文字生成语音功能,英文效果好,中文存在外国人口音问题,功能可选择语音模型多。 3. Delphi 可以将个人的所有视频、播客、PDF、博客文章等信息训练为一个分身,并能用分身对外提供咨询服务,支持文字、语音甚至视频沟通,还支持对话内容的数据分析以优化交流。 4. Osum 是一款人工智能市场研究工具,可通过按下按钮获取产品或企业的详细研究、SWOT 分析、买家人物画像、增长机会等信息,还提供销售前景分析器,并能在几秒钟内为任何商务或产品提供完整 SWOT 分析。
2025-04-01
mcp服务是什么
MCP(模型上下文协议)是一项创新标准,由 Anthropic 于 2024 年 11 月推出并开源。它是为 AI 模型统一连接数据与工具的标准接口,旨在让大语言模型能够无缝连接至第三方的数据源。 MCP 的好处包括: 简化开发:一次整合,多次复用,不再重复开发。 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 实时互动:长连接保证数据实时更新。 安全可靠:内置标准化安全和权限控制。 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 MCP 与传统 API 的关键区别在于: 单一协议:MCP 像一个统一接口,只要一次整合,就能连接多个服务。 动态发现:AI 模型能自动识别并使用可用的工具,不用提前写死每个接口。 双向通信:MCP 支持类似 WebSockets 的实时双向通信,模型不仅能查询数据,还能主动触发操作。 传统 API 更适合的场景包括: 需要细粒度控制、功能严格限制。 更偏好紧耦合以提升性能。 希望最大化交互的可预测性。 快速集成 MCP 的步骤: 1. 定义能力:明确 MCP 服务器提供的功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 通过 MCP,我们可以让 AI 使用各种强大工具,比如查询实时天气、联网搜索最新信息、调用私人数据库等。
2025-03-27
我公司想部署一个deepseek-R1,用云服务器请问大概需要多少钱?
部署 DeepSeekR1 模型使用云服务器的价格因云计算厂商而异: 华为昇腾社区:部署 DeepSeekR1 模型用 BF16 权重进行推理至少需要 4 台 Atlas 800I A2(864G)服务器,用 W8A8 量化权重进行推理则至少需要 2 台 Atlas 800I A2。服务器调用 Docker 下载部署权重资源,非 API 调用模式。 阿里云(人工智能平台 PAI):以 R1 为例,所需计算资源价格 316.25/小时。模型部署成在线服务,在人工智能平台 PAI 下的模型部署下的模型在线服务 EAS。 阿里云(阿里云百炼):免费额度:10000000/10000000,通过 API 调用。 腾讯云(自建服务器):多机分布式部署,节点数量:2 个,单节点配置:HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):API 调用 DeepSeek 系列模型限时免费。即日起至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3、DeepSeekR1 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:“deepseekr1:1.5b、“deepseekr1:7b”、“deepseekr1:32b”,1.89/小时起;服务器部署的方式。 gitee ai:R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 需要注意的是,价格可能会有所变动,具体以各云计算厂商的最新公布为准。
2025-03-25
可以为我找到在线更换图片颜色服务的AI网站吗
以下是一些可以在线更换图片颜色服务的 AI 网站相关信息: 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下将图片放大到足够的倍数。 在最近新上线的 controlnet 模型中,Recolor 新模型可将黑白图片重新上色。 对于人物照片还原,可选择 realisian 的写实大模型,通过提示词描述颜色和对应内容,如黑色的头发、黄色的皮肤、深蓝色的衣服、浅蓝色的背景等。ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。 您可以通过以下网址获取更详细内容:https://mp.weixin.qq.com/s/hlnSTpGMozJ_hfQuABgLw
2025-03-25
研究报告提示词
以下是关于研究报告提示词的相关内容: 首先要确定整个调研报告的大纲目录,可以利用老师提供的示例报告截图并用手机识别。然后确定整体的语言风格和特色,调研报告的语言风格通常是“逻辑清晰,层层递进,条理分明”,可将范文交给 Claude 2 总结语言风格。但要注意,生成文章时不要过于限制 GPT4,否则效果不佳。 接着让 GPT4 按照目录逐步生成章节内容,在 workflow 中设置循环结构,生成一段章节内容后经同意再进行下一部分,否则重新生成。生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息。这部分难度较大,可能导致半天才能搞定一条提示词,甚至迭代 1 天半,过程中可能会遇到 workflow 失效、插件选择和使用等问题。 好在通过向星球和群聊中的大佬求助,获得了建议和思路。比如在需要搜索网络信息的章节处打上标签,让 GPT4 看到标签后自主搜索信息再来生成内容,没打上标签的直接输出,这种方法可行。最后,按顺序完成 prompt 的其他部分。 最新版本的 prompt 经过以上操作得以完成,之前用前几版 prompt 已帮团队和同学完成 3 篇调研报告,但效果不及最新版。建议平时可利用 GPT4 降本增效,尝试编写提示词。
2025-04-15
我是医科大学的本科学生,我现在想用Ai帮助我书写论文和报告,我应该怎么系统学习?
以下是一些系统学习利用 AI 帮助书写论文和报告的建议: 一、了解常用的 AI 工具和平台 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、学习使用 AI 辅助撰写论文和报告的方法 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。 三、注意事项 1. AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 保持科学的态度和方法,遵循科学伦理原则。 3. 了解现阶段 AI 在教育领域应用的局限性,如知识适配的层次性问题、教育应用的安全性考量等。 希望以上内容对您有所帮助。
2025-04-14
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
2025年AI研究报告
以下是为您提供的 2025 年 AI 研究报告相关信息: Gartner:《生成式 AI 时代下科技产品的重要发展机遇》(2024/10/16) 强调了生成式 AI 技术对对话式 AI 和科技产品创新的显著影响。 预计到 2025 年,生成式 AI 将嵌入 80%的对话式 AI 产品中,推动市场营收大幅增长。 建议技术供应商积极把握机遇,通过理解市场动态、技术成熟度和市场接受度来调整策略。 生成式 AI 的四大关键能力—对话式 AI、AI 代理、合成数据和个性化—能够提升产品价值和客户体验。 提出了将生成式 AI 功能添加到产品中的四个关键步骤,并强调了独立软件供应商在企业应用中嵌入生成式 AI 能力的趋势。 如需下载研究报告,。 甲子光年:2025 DeepSeek 开启 AI 算法变革元年(2025/02/05) DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能。 报告强调 2025 年是算法变革的元年,DeepSeek 的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。 非 Transformer 架构的算法模型成为新的发展方向,如 LFM 架构模型性能超越同等规模的 Transformer 模型。 如需下载研究报告,。 安永:数据+AI 开启经验规模化复制时代(2023/12/19) 人工智能正在经历新的发展浪潮。 某头部公司正在转向 AI Agents 支持平台,结合第 4 代人工智能模型与专业语料库以实现业务创新。 AI Agents 有望为商业领域注入新活力,展示人工智能的潜力和商业价值。 随着平台的发展,新的 AI Agents 涌现,提供专业化、高端化、个性化、规模化、持续化的服务。 人工智能的革新涵盖了生成内容(AIGC)和生成服务(AIGS)的领域。 保险行业面临挑战,AI 的突破为其带来新的应对方向。 知识星球下载: 弘则研究:2023 生成式 AI 驱动向量数据库加速发展(2023/12/18) 向量数据库潜在市场空间是传统结构化关系型数据库的数倍达到千亿美元。 据信通院统计数据,全球数据库市场规模在 2020 年为 671 亿美元,到 2025 年有望达到 798 亿美元,CAGR 3.5%估算关系型数据库全球龙头 Oracle 收入规模小几百亿美元。 仅考虑现有非结构化数据的向量化处理,估算需要的存储空间增量为之前的数倍。 未来随着生成式 AI 应用增量数据的爆发对于向量数据库的需求会更大。 报告下载地址:
2025-04-09
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和在设计领域的应用发展的研究报告
以下是为您找到的一些可能符合您需求的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,包括智慧医疗、智慧教育、企业服务等,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。报告分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. 智能纪要:【跨界·未来】AIGC×视觉交互工作坊 Part1:AI 应用前瞻 2025 年 3 月 11 日。涵盖了 AI 在艺术创作中的应用与探索,包括 Lora 模型训练素材、模型训练比赛、Checkpoint 模型、线上与本地工作流、学习资源推荐、AI 创作挑战、装置艺术脉络、机械装置艺术理论、国内外装置艺术区别、AIGC 艺术尝试、机械进化与装置创作等方面。
2025-03-31
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14