Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

思维链

Answer

思维链(CoT)可以分为以下几种类型:

  1. 逻辑推理链:运用逻辑推理,如演绎、归纳或类比推理来解决问题得出结论。
  2. 步骤序列:表现为一系列按特定顺序执行的操作或步骤,用于解决算法或复杂任务规划等问题。
  3. 因果链:处理因果关系问题,用来表示事件间的因果链条,帮助模型理解因果关系。
  4. 情境模拟:涉及模拟或想象场景并在该情境下思考,以解决问题或做出决策。
  5. 对话链:在对话系统或交互式任务中,指连续的对话过程,每步回应基于之前交流内容。

在不同研究和应用中,CoT 的具体实现和分类可能不同。在 AI 领域,特别是开发能进行复杂推理和理解的模型时,CoT 方法愈发重要,旨在模拟人类思考过程,帮助 AI 系统更好理解问题上下文、解决步骤及有效应用知识得出结论。

关于虚拟陪伴需求的思维链:

  1. 陪伴是全人类共同需求,但供给严重不足。
  2. 虚拟陪伴可解决供给问题。
  3. 虚拟陪伴是全人类共同需求。

但用户真正需要什么样的虚拟陪伴暂无答案,这需从实践中寻找。享受可能是当下认为虚拟陪伴最重要的特质,应让用户少付出多得到。

在提示方面:

  1. Wei 等人(2022)引入的链式思考(CoT)提示通过中间推理步骤实现复杂推理能力,可与少样本提示结合用于更复杂任务。
  2. 零样本 CoT(Kojima 等人,2022 年),将“让我们逐步思考”添加到原始提示中,在没有太多示例用于提示时可能有效。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:CoT是什么,分为哪几种

CoT可以分为几种类型,具体取决于应用场景和具体任务,但在广义上,CoT的类型可以基于以下几个维度来分类:1.逻辑推理链:这种类型的CoT涉及使用逻辑推理来解决问题,例如通过应用演绎、归纳或类比推理来得出结论。2.步骤序列:在某些任务中,CoT可以表现为一系列操作或步骤的顺序,这些步骤需要按照特定的顺序执行以解决问题,如算法问题解决或复杂任务的规划。3.因果链:在处理因果关系问题时,CoT可以用来表示事件之间的因果链条,帮助模型理解事件之间的因果关系。4.情境模拟:在某些情况下,CoT涉及模拟或想象一个场景并在该情境下进行思考,以解决问题或做出决策。5.对话链:在对话系统或交互式任务中,CoT可以指一个连续的对话过程,其中每一步回应都基于之前的交流内容。在不同的研究和应用中,CoT的具体实现和分类可能有所不同。在AI领域,特别是在开发能够进行复杂推理和理解的模型时,CoT方法正变得越来越重要。通过模拟人类的思考过程,CoT旨在帮助AI系统更好地理解问题的上下文、解决问题的步骤,以及如何有效地应用知识来得出结论。这里的论文应该对你有帮助:

享受型虚拟陪伴

关于虚拟陪伴需求的思维链:1.陪伴是全人类共同的需求,但陪伴的供给严重不足2.虚拟陪伴可以解决供给问题3.虚拟陪伴是全人类的共同需求我们可以用逻辑推理出需求成立的链条,但用户真的需要什么样的虚拟陪伴呢?这个我们没有答案,这是一件纯粹后验的事情,需要从实践中寻找。但是享受可能是我们在当下所认为的虚拟陪伴最重要的特质,先不管是不是真的能陪伴到,起码用户得享受起来。尽可能让用户少付出,多得到,就是享受的产品实践。接下来是几个产品探索,让用户更加享受虚拟陪伴。[heading2]AI WanderLand:享受型虚拟陪伴

思维链(CoT)提示

图片来源:[Wei等人(2022)(opens in a new tab)](https://arxiv.org/abs/2201.11903)在[Wei等人(2022)(opens in a new tab)](https://arxiv.org/abs/2201.11903)中引入的链式思考(CoT)提示通过中间推理步骤实现了复杂的推理能力。您可以将其与少样本提示相结合,以获得更好的结果,以便在回答之前进行推理的更复杂的任务。提示:输出:哇!我们可以看到在提供推理步骤时得到了完美的结果。实际上,我们可以通过提供更少的示例来解决此任务,即仅一个示例似乎就足够了:提示:输出:请记住,作者声称这是足够大的语言模型才会出现的新兴能力。[heading2]零样本COT提示[content]图片来源:[Kojima等人(2022)(opens in a new tab)](https://arxiv.org/abs/2205.11916)最近提出的一个新想法是[零样本CoT(opens in a new tab)](https://arxiv.org/abs/2205.11916)(Kojima等人,2022年),它基本上涉及将“让我们逐步思考”添加到原始提示中。让我们尝试一个简单的问题,看看模型的表现如何:提示:输出:答案是不正确的!现在让我们尝试使用特殊提示。提示:输出:令人印象深刻的是,这个简单的提示在这个任务中非常有效。这在您没有太多示例可用于提示时特别有用。

Others are asking
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
如何自动生成思维导图 有推荐的工具吗
以下是一些可以自动生成思维导图的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,包括通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路并生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动生成思维导图。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能借助 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。 此外,在使用<generateTreeMind>插件节点自动生成思维导图时,有以下配置思路: 1. 确定处理方式:一次精读任务仅需生成一张思维导图,选择“单次”处理方式。 2. 确定输入:在输入区,该插件仅需设置{{query_text}}变量,格式为 string 字符串,引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。 3. 确定输出:观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来定位所需字段。若需要图片格式的思维导图,确定 pic 为所需输出。
2025-04-03
ai思维导图提示词
以下是关于 AI 思维导图提示词的相关内容: 在文生图的提示词中,例如“”,来告诉 AI 不要的内容。 在 AI 作图的创作中,有以下要点: 1. 趣味性与美感概念:趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。 2. 纹身图创作:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 魔法少女示例:以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 4. 提示词编写方法:用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 5. 实操演示准备:以未发布的 Lora 为例,按赛题需求先确定中式或日式怪诞风格的创作引子。 6. 人物创作过程:从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 优化和润色提示词(Prompt)的方法包括: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述需求,而非过于笼统的词语。 2. 添加视觉参考:在 Prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究流行且有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续优化完善。 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界,保持开放思维尝试创新描述方式。
2025-03-31
思维导图生成ai
以下是一些与思维导图相关的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,可通过 AI 自动生成思维导图,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。 此外,还有一些关于思维导图生成的相关信息: 在使用 flowith 时,可通过引用节点技巧让 AI 根据特定参照输出高关联度内容,还可对比不同模型输出择优深挖,在满意内容节点添加“文本编辑器显示”进行精加工。 12 月更新的生成式 AI 年终数据中,思维导图相关的如 Whimsical Al 等也有相关流量等数据统计。
2025-03-25
思维导图自动生成
以下是关于思维导图自动生成的相关内容: 使用 Coze 工作流自动生成思维导图: 在上一步生成英文阅读大纲后,使用<generateTreeMind>插件节点自动生成思维导图。 1. 确定处理方式:选择“单次”,因为一次精读任务仅需生成一张思维导图。 2. 确定输入:在输入区,该插件仅需设置{{query_text}}变量,格式为 string 字符串,引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。 3. 确定输出:观察输出区,所需的是图片格式的思维导图,确定 pic 为需要的输出字段。 与思维导图相关的 AI 工具: 1. GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能。 自动生成思维导图的在线工具 ChatMind: 开发者@石天放开发的 ChatMind 是利用 AI 自动生成思维导图的在线工具,只需要输入问题、文章、数据就可以,对于问题还能自己获取答案,可导出图片与 Markdown 文档两种格式。链接:https://www.chatmind.tech/
2025-03-23
我想用扣子搭建有着我自己思维的智能体,让他能进行日常对话和创作
以下是用扣子搭建具有自己思维的智能体,使其能进行日常对话和创作的步骤: 1. 创建智能体:使用单 Agent 对话流模式。 2. 编排对话流:点击创建新的对话流并与智能体关联,在获取笔记详情节点和笔记评论节点分别配置 cookie,note_link 使用开始节点的 USER_INPUT,使用代码节点进行数据处理,注意代码节点输出的配置格式。 3. 测试:找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据,同时在智能体的编排页面进行测试,确保对话流执行成功。 4. 发布:点击发布后选择多维表格,进行配置,包括输出类型选文本、输入类型选字段选择器,完善上架信息,填写表格,选发布范围时可选择仅自己可用以加快审核。 此外,扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法,能解决大模型的知识不足问题。在智能体中可运用自己的知识库,如收集地道口语表达的短句。还可为智能体添加开场白以提升体验。 在多智能体模式设置中,包括全局设置和多个代理之间的编排协调。全局设置涉及角色设定与回复逻辑、记忆管理和对话体验等,在设计智能体交互流程时应形成完整互动链条,采用循环机制而非单向流程,可通过旅游场景中景点推荐、路线规划和食宿安排等智能体的例子来理解。
2025-03-16