Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果让新手小白知道合理使用GPT

Answer

以下是一些让新手小白合理使用 GPT 的建议:

  1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握一次有效记忆的长度,避免在超过限制时还继续提问最初的问题。编写 Prompt 时珍惜 Token,秉承奥卡姆剃刀原理,精简句子和措辞,尤其是在连续多轮对话中。
  2. 熟练使用中英文切换:Prompt 太长时,可用英文设定并要求用中文输出,节省 Token 用于更多对话。了解自带方法论的英文短语或句子,如“Chain of thought”。
  3. 相信 GPT 的能力,大胆提要求:不问问怎么知道它不会呢。
  4. 明确自身需求:跟 GPT 提的要求尽量准确,像给员工安排工作那样。
  5. 不断追问:只要不明白,就目标明确、表达精确地追问。
  6. 提供准确信息:若需要贴身保姆级帮助,把自身准确信息给 GPT。
  7. 规划、记忆和使用工具:GPT 可以在一个会话里根据用户需求和上下文自行选择工具并做出行动。若选择最容易上手的 Action,Webpilot 应当首当其冲,使用方法为在新建的 GPT 里把 Web Browsing 勾掉,点击添加 Actions(Add actions),再点击 import from URL 并填入相应网址。

提问的逻辑和准确度是能否用好 GPT 的核心竞争力。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:Prompt 喂饭级系列教程小白学习指南(三)

1、理解Token限制,形成“当前消耗了多少Token”的自然体感,显然会有利于你在连续对话的时候把握一次有效记忆的长度。这样你就不会傻乎乎在超过9000 Token的时候还在继续问最初的问题,然后得到一个失忆的回答,自己也很懵。2、编写Prompt的时候你需要珍惜你的Token s,尽可能秉承奥卡姆剃刀原理,能不多说一句废话就不多说一句,句子、措辞,都值得精简。尤其是在连续多轮对话中,精简有效的表达习惯是非常重要的。五、基于上述原理有哪些Tips1、熟练使用中英文切换。Prompt本身太长了的话,建议用英文设定,要求它用中文输出即可,这样一来可以把省出来的Token留给更多次数的对话。2、了解一些本身就自带方法论的英文短语或者句子,很多时候你只要提到这个词,GPT就知道你指的是什么意思,而不用写一个自然段来描述你需要的这个方法,例如:“Chain of thought”最后:?️那你有没有想过,这些公司为什么不把Token限制放高一点呢?大不了比GPT-4 API价格再高一点呗,咱为了良好的体验,也不是不愿意花钱。其实不是OpenAI、Google不想,而是他们不能。即使Claude 2.0声称能接受10万Token s(约等于5万汉字),你实际去用就会发现,它其实也记不清10万Token s那么多。GPT本质是文字接龙,根据过往Token序列推测下一个最有可能的Token是什么⬇️过往Token序列太长,会导致计算量过大、计算精度下降⬇️OpenAI为GPT模型增加了Token限制

阿飞:GPT手把手教我从一窍不通到成功写出实用脚本

2、相信他的无所不能(暂且相信,有些他确实不行-。-),大胆提要求让他帮你完成。不问问咋知道它不会呢?3、明确自己的需求,跟GPT提的要求尽量准确,像给自己的员工安排工作那样。4、不断的追问,只要不明白,就目标明确、表达精确的追问。5、GPT在不了解你工作环境和个性需求的时候,只能把你当做“大家”,提供的是一个共性帮助,如果你需要贴身保姆级的就把自己准确信息给它,就像我文中写的那样,直接贴给他你的文件目录地址,请他直接给你做好。总之,提问的逻辑和准确度,是能不能用好GPT的核心竞争力。

像高手一样编写 GPT:从基础到实践,学习使用 GPT 的 Action

1.规划2.记忆3.使用工具(工具+行为Action)你可能有印象——在之前的GPT-4,画图工具Dall-E,Bing搜索,插件,和代码解释器,都需要切换不同的会话/窗口实现的。后来GPT-4成为了GPT:All-Tools,可以在一个会话里根据用户需求和上下文自行选择工具,并且做出行动——这个行动,就是OpenAI定义的“Action”,如下图:当你在让它搜索,画图的时候,GPT会先思考决定怎么使用工具,然后会出现一个小图示,告诉你他尝试使用工具来完成你的任务。现在你应该能够认清AI-Agent、GPT和Action之间的联系了:GPT(All-Tools,也是现在大家正在开发的“GPTs”),是OpenAI之于传统Agent定义交上的一份答卷——具体的描绘了在大语言模型(LLM)驱动下Agent的系统实现方式。即:使用LLM驱动,通过外部API获取信息和执行的行动(Action),也是本文后半部提到的Action的定义,如下:如果要选择一个最容易上手的Action,Webpilot()应当首当其冲:它能够让你的GPT支持比原本的“Web Browsing”更加实时的联网功能,同时还能获取网络上的文本和部分链接,使用方法也很简单,只需要30秒:第一步:在新建的GPT里把Web Browsing勾掉,因为他们的作用都是让GPT可以访问网络上的资源,不勾选可能会有冲突。第二步,点击添加Actions(Add actions):第三步,点击import from URL,填入:https://gpts.webpilot.ai/gpts-openapi.yaml

Others are asking
gpt充值
以下是关于 GPT 充值的相关内容: 苹果系统安装、订阅 GPT4 教程 一、注册准备 1. 若使用的邮箱注册过 Apple ID,建议换全新邮箱,最好使用 iCloud 或谷歌邮箱。 2. 若使用的手机号码以前注册过多个 Apple ID(2 个或 2 个以上),强烈建议使用全新手机号码。 3. 若电脑端注册始终出现提示,可尝试换到手机端,使用 Safari 浏览器注册。 4. 若 IP 地址被风控,使用美国 IP 地址注册。 5. 密码中不要包含名字,年龄需大于 18 岁。 二、使用支付宝购买礼品卡充值订阅 GPT4 1. 支付宝购买礼品卡 来到支付宝首页,在左上角位置选择美国城市(如纽约),在底部位置选择“大牌礼卡低至 9 折”。 选择 App Store。 第一次购买需绑定美区 ID,按指示绑定,绑定后输入要充值的美金金额。 直接用支付宝支付。 根据当天汇率,实际支付的人民币金额会有所不同。 完成付款后点击订单列表。 复制礼品卡号码。 2. 充值到美区 ID 来到 App Store,点击右上角的人形头像,点击兑换充值卡或代码。 点击手动输入兑换码。 粘贴礼品卡号码,点击兑换。 成功充值到美区 ID 账号。 3. 到 ChatGPT 订阅 Plus 打开 ChatGPT,用谷歌邮箱登录后点击最上方的 Get Plus。 点击 Upgrade to Plus。 之后会弹出苹果支付页面,确认订阅后每个月将会在美区 ID 账户里扣款,若想保持订阅,每个月需确保账户有足够金额。 若中途不想继续订阅了,可到订阅列表中取消订阅。 极简未来(Link.AI)平台充值 机器人应用背后使用到的大模型等能力需要付费。平台的计费规则如下: 1. 详细版计费规则可参考:https://docs.linkai.tech/platform/funds/price 。 2. AI 大模型相关的功能交互主要用 Token 作为单位,不同大模型能力,平台一积分能兑换到的 Token 数不同,能力越强的大模型一积分所能兑换到的 Token 数越少,如日常使用的 GPT 3.5 能力的大模型,平均每次对话大概消耗不到 20 积分。 3. 除每天平台签到可免费领取 50 到几百的积分外,充值 19 元可兑换 10000 积分,使用成本不算高。
2025-04-18
chatGPT
ChatGPT 是一种由 OpenAI 开发的基于 GPT(生成式预训练变换器)架构的人工智能模型。 它的工作原理是:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。特别是能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。 其具体工程相当引人入胜,最终(至少在它可以使用外部工具之前),ChatGPT 仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo。使用 OpenAI 的 API,你可以用它构建自己的应用来做很多事情,比如起草邮件、写 Python 代码、回答关于一组文档的问题、创建会话代理、给软件提供自然语言接口、辅导各种学科、语言翻译、假扮游戏或其他内容的角色等。 目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 是免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4 高,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店和高级数据分析等插件。想要使用更多功能更智能的 GPT4 需要升级到 PLUS 套餐,收费标准是 20 美金一个月,当然 GPT4 还有团队版和企业版,功能更多、限制更少,但费用也更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号之前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。
2025-04-12
gpt4o图像生成提示词有哪些
以下是一些 GPT4o 图像生成的提示词示例: 1. 将这张图更改为蓝色氛围,星星图标改为魔法棒图标,同时将里面文案描述的主题改为其他的。 2. 帮我生成一张这样的 UI 设计稿:Peerlist 邀请链接界面分析,界面内容。 3. 一张逼真的照片,描绘了一匹马在宁静的海洋表面从右向左奔驰,准确地描绘了飞溅的水花。 Realistic photograph of a horse galloping from right to left across a vast,calm ocean surface,accurately depicting splashes,reflections,and subtle ripple patterns beneath their hooves.Exaggerate horse movements but everything else should be still,quiet to show contrast with the horse's strength.clean composition,cinematographic.A wide,panoramic composition showcasing a distant horizon.Atmospheric perspective creating depth.zoomed out so the horse appears minuscule compared to vast ocean.horse is right at the horizon where ocean meets sky.use rule of thirds to position horse.size of horse is 1% size of entire image because camera is so far away from subject.camera view is super close to the ground/ocean like a worm's eye view.horse is galloping right where ocean meets the sky 4. 生成一张 2006 年夏天的周六多伦多农夫市场的逼真照片,那天是六月的美好时光,人们在购物和吃三明治。焦点应是一个穿着牛仔工装裤、啜饮草莓香蕉奶昔的年轻亚洲女孩——其余部分可以模糊。照片应让人联想到 2006 年的数码相机拍摄的效果,带有像打印照片一样的日期和时间戳。画幅比例应为 3:2
2025-04-11
GPT提示词
以下是关于 GPT 提示词的相关内容: 夙愿:AI 快速总结群聊消息 提示词:需要编写一套提示词让 GPT 执行总结文字内容的工作,包括单人发言版和多人发言版。 GPT 处理:将提示词和文字原文发送给 GPT,等待其输出完毕后复制粘贴到文本编辑器中,整理并删除无关内容,替换双星号。 头脑风暴常用的 20 个 prompt:列举了 20 个不同类型的提示词,如 Brainwriting Prompt、Reverse Brainstorming Prompt 等。 子瞻:五个 GPTs 破解攻略 GPT 使用的两大痛点:创建满足指定需求的提示词和找到满足指定需求的 GPTs。 学习高质量提示词的好处:学习高手的 Prompt 方法和更好地使用对应的 GPTs。 五大破解攻略的具体方法: 直接法:适用于未设置提示防御和未限定回答领域,示例中只要四个单词,粗暴好用。 设置遗忘:适用于 GPTs 设置了简单的提示防御。 复述法:适用于可获取 OpenAI 官方的设定。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
gpts相关内容
GPTs 是 OpenAI 推出的一种工具,允许用户量身打造自己的 AI 助理。用户可根据自身需求和偏好创建完全定制的 ChatGPT,如能帮忙梳理电子邮件或提供创意灵感的助手。目前,OpenAI 已推出几种现成的 GPTs 供使用,如“The Negotiator”“Game Time”等,用户也可上传资料来自定义 GPTs。 GPTs 的出现代表着 AI 技术的重要进展,将 AI 应用延伸到普通大众的日常生活。其使用目前仅限于 ChatGPT Plus 的用户,且 OpenAI 推出了 GPT Store 平台,允许用户分享他们的 GPTs,甚至可能实施收益分润制度。 例如,有网友分享了 RPG 版《悲惨世界》的 GPTs 案例,其提示词包括设定游戏背景、角色、剧情发展依据、对话格式与信息、场景图片等要求。 总的来说,GPTs 是一种让使用者能够量身打造自己的 AI 助理的工具,开启了个性化 AI 的新阶段,为开发者和普通用户提供了更多便利。
2025-03-31
新手怎么学习AI 做视频
对于新手学习 AI 做视频,以下是一些建议和指导: 一、了解 AI 视频的应用和价值 AI 视频能应用于多个领域,具有多种用途,例如: 1. 创意广告与营销:快速生成吸引眼球的短视频,降低成本,提高效率。 2. 社交媒体内容:制作独特的动态视觉效果,让帖子更出众。 3. 电商展示:生成商品展示视频或 3D 效果,生动呈现产品特性。 4. 数字人解说:借助数字人技术生成虚拟主播或形象来解说内容。 5. 个性化动画与故事:将想法变成生动的动画短片。 6. 教育与演示:生成解释性视频或动态图表,让信息更直观。 7. 艺术创作与实验:探索新的视觉表达方式。 8. 乐趣与分享:快速制作好玩的视频。 变现方式包括: 1. 接单制作商业广告、社交媒体视频。 2. 成为自由职业者,提供 AI 视频制作服务。 3. 创作自己的 IP 内容,通过流量或平台分成赚钱。 4. 开发相关教程或咨询服务。 二、学习制作流程 如果想用 AI 把小说做成视频,大致流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-04-14
如果是小白新手,理论应用到实践中最重要的是什么
对于小白新手,将理论应用到实践中,以下几点最为重要: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,可找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品做出作品,知识库中有很多实践后的作品和文章分享,欢迎分享自己的实践成果。 5. 体验 AI 产品:与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,就像有人认为“只要知道它的原理和历史,自然而然就会知道它的底线和顶点在哪里”,但实践中的体验和尝试同样不可或缺。
2025-04-13
我是一个接触这个知识库的新手,请你根据知识库给我做一个学习计划。
以下是为您制定的新手学习 AI 的计划: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-04-11
我是一个新手,请给我一些AI文本工具的操作指南
以下是为您提供的一些 AI 文本工具的操作指南: AI 内容检测工具 1. 功能:提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。 使用方法:将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 2. GPTZero 功能:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。 使用方法:上传文档或输入文本,系统会分析并提供报告,显示文本是否由 GPT3 生成。 3. Content at Scale 功能:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。 使用方法:将文本粘贴到在线检测工具中,系统会分析并提供结果。 TecCreative 创意工具箱 1. AI 字幕 操作指引:点击上传视频——开始生成——字幕解析完成——下载 SRT 字幕。 注意:支持 MP4 文件类型,大小上限为 50M。 2. 文生图 操作指引:输入文本描述(关键词或场景描述等)——选择模型(注意 FLUX 模型不可商用)——开始生成——下载。 3. AI 翻译 操作指引:输入原始文本——选择翻译的目标语言——开始生成。 4. TikTok 风格数字人 操作指引:输入口播文案——选择数字人角色——点击开始生成。 视频默认输出语言和输入文案语言保持一致,默认尺寸为 9:16 竖版。 5. 多场景数字人口播配音 操作指引:输入口播文案——选择数字人角色和场景——选择输出类型——点击开始生成。 视频默认输出语言和输入文案语言保持一致。 AI 文章排版工具 1. Grammarly 不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot AI 驱动的写作和排版工具,可改进文本清晰度和流畅性,保持原意。 3. Latex 虽不是纯粹的 AI 工具,但广泛用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc 文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune AI 写作助手,可重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf 在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的 AI 文章排版工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎,因其提供强大排版功能和广泛学术支持。对于一般文章和商业文档,Grammarly 和 PandaDoc 等工具可能更适用。
2025-04-11
我现在是一个完完全全的新手,我现在想要从0开始学习ai,请你协助我,我该怎么做
对于完全的新手想要从 0 开始学习 AI,建议您按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-11
我是新手小白,正在学习ai,我应该怎么做
对于新手学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-04-10
作为AI小白,需要一些AI常用专业术语的名词解释
以下是一些 AI 常用专业术语的名词解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 Gradient Descent(梯度下降):在机器学习中,是一种优化方法,根据模型损失函数的最大改进方向逐渐调整模型的参数。 Hallucinate,Hallucination(幻觉):在人工智能的背景下,指模型生成的内容不是基于实际数据或与现实明显不同的现象。 Hidden Layer(隐藏层):神经网络中不直接连接到输入或输出的人工神经元层。 Hyperparameter Tuning(超参数调优):为机器学习模型的超参数(不是从数据中学习的参数)选择适当值的过程。 Inference(推理):使用经过训练的机器学习模型进行预测的过程。 Instruction Tuning(指令调优):机器学习中的一种技术,其中模型根据数据集中给出的特定指令进行微调。 Latent Space(潜在空间):在机器学习中,指模型创建的数据的压缩表示形式。类似的数据点在潜在空间中更接近。 Compute(计算):用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN(卷积神经网络):一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。通常用于图像识别任务。 Data Augmentation(数据增强):通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent(双降):机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning(端到端学习):一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems(专家系统):人工智能技术的应用,为特定领域的复杂问题提供解决方案。 XAI(可解释的人工智能):Explainable AI,人工智能的一个子领域专注于创建透明的模型,为其决策提供清晰易懂的解释。
2025-04-18
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
作为一个小白,如何开始ai编程
以下是小白开始 AI 编程的步骤和相关建议: 直接上手: AI 编程就像一场 PUA 和提问大赛。 要分辨 Chat 和 Composer 两个模式。Chat 模式可与大模型对话,但常用的是 Composer 模式,它能即时反馈,直接创建文件、填写代码并询问您是否满意。 例如,在 Composer 模式下输入“给我创建一个 2048 的网页游戏吧”,1 2 分钟后会生成相关文件。 生成文件后,可打开文件夹找到 index.html 双击查看本地运行效果。若环境报错双击打不开,可截图在 Composer 对话框询问解决方法。 思想准备: 对于小白来说,因为无知会充满勇气和忧虑。能从心理上面对“我或许能行”这件事,可能就解决了 AI 编程问题的一半。 后续探索: 作者将继续探索并更新相关文章,包括: 第一弹,一点小小的震撼——cursor 黑客松。 第二弹,文案工作者的福音——cursor 批量写 prompt、写文章。 第三弹,上一辈的崛起——cursor 的“向上”,给爹妈一场安利。 如果想要交流或了解更多,欢迎戳这里:
2025-04-14
如何基于你的模型对一台工业设备(钢板划线印字装备)进行故障诊断和预测性维护,从以下几个方面进行分析 1.技术栈:数据采集与通讯,数据库,算法,前端,微服务、应用等,并进行软件选型 2.硬件选型:工业设备、边缘计算设备,软件部署硬件,分别列出性能最优和国产化替代方案 3.算法创新性:要求可发表高水平论文和申请发明专利 4.算法通用性:考虑如何通过一个通用模型经过简单配置适应不同船舶建造工业设备的故障诊断和预测性维护 5.考虑前后合理性,若以此进行招标,如何描述招标内容
以下是为您整合的相关内容: Transformer 模型和 BERT 模型: 模型训练与评估:定义模型后,传递训练数据集和验证数据集及训练时期数,训练完成后评估性能,如达到 85%准确率。 模型性能可视化:绘制准确性和随时间的损失图。 保存与加载模型:使用 model.save 方法导出并保存模型到本地路径,保存后可加载进行预测。 预测示例:对不同情感的评论句子进行预测。 部署模型到 Vertex AI:检查模型签名,上传本地保存的模型到 Google Cloud 存储桶,在 Vertex 上部署模型并获得在线预测。 提示工程: 策略:将复杂任务分解为更简单的子任务。 技巧:使用意图分类识别用户查询中最相关的指令。例如在故障排除场景中,根据客户查询分类提供具体指令,如检查路由器连接线、询问路由器型号、根据型号提供重启建议等。模型会在对话状态变化时输出特定字符串,使系统成为状态机,更好控制用户体验。 OpenAI 官方指南: 战术:将复杂任务拆分为更简单的子任务。 策略:使用意图分类来识别与用户查询最相关的指令。例如在故障排除场景中,基于客户查询分类向 GPT 模型提供具体指令。已指示模型在对话状态变化时输出特殊字符串,将系统变成状态机,通过跟踪状态等为用户体验设置护栏。
2025-02-12
(defun 生成记忆卡片 (单词) "生成单词记忆卡片的主函数" (let* ((词根 (分解词根 单词)) (联想 (mapcar #'词根联想 词根)) (故事 (创造生动故事 联想)) (视觉 (设计SVG卡片 单词 词根 故事))) (输出卡片 单词 词根 故事 视觉))) (defun 设计SVG卡片 (单词 词根 故事) "创建SVG记忆卡片" (design_rule "合理使用负空间,整体排版要有呼
以下是关于生成记忆卡片和 SVG 卡片的相关信息: 卡片类的应用被定义为词生卡片,如李继刚的《汉语新解》、一泽的《名片设计》、云中江树的《AI 简历》等,都是通过给大模型优化过的 Prompt,让其生成 HTML 代码或 SVG 代码,再通过浏览器渲染效果。 把提示词丢给 Claude ,如在 Poe 平台上的 Claude 模型,大概率会直接输出 SVG 代码,但对于子步骤是否执行等情况难以知晓。Andrej Karpathy 认为,模型需要 tokens 来思考,如果大语言模型未将思考过程外化,则几乎等于没思考。 甲木介绍了让 Claude 生成古诗词卡片的方法,流程包括输入 Prompt 、用户输入主题和风格,AI 输出最终结果。获取提示词已开源,创作过程主要是根据给定主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片展示诗词,并提供相关信息,还支持根据用户提供的主题和方向生成对应语境的 prompt 并配图生成 SVGCard 。但对于“逼格高”的看法因人而异,可将选择权交给 AI 。
2024-11-28
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
小白想了解AI相关知识,请提供合理化建议
以下是为小白提供的关于 AI 相关知识的合理化建议: 一、概念部分 1. 生成式 AI 生成的内容被称为 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习是指电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 深度学习是一种参照人脑构建神经网络和神经元的方法(因层数多而称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 能够生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 二、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN)。GPT 中 Transformer 是关键,且 Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-10-14
我想知道大模型厂商内置的提示词一般都有多少个字比较合理?并给出数据来源
大模型厂商内置的提示词字数并没有一个固定的标准,其合理性取决于多种因素。 一般来说,提示词的字数可能寥寥无几,但更多时候需要提供详尽的上下文和相关细节。例如,在要求 GPT 删除个人信息的官方示例中,提示词包括背景、定义术语、给出模型应如何完成任务的具体细节等多个方面。 在一些经验分享中提到,提示词中的示例 5 6 个效果最佳。同时,提示词的整体结构需要调整和优化,除了技能外还应有完整的工作流程设定,角色信息中的人设应特点鲜明,避免同质化。还需注意避免矛盾和重复的提示词内容,可通过调整提示词顺序的方法提高重要指令的权重。 数据来源包括胡凯翔基于阅读 Claude Cookbook 的思考和测试、Agent 共学“谁是人类”活动参赛心得分享等。
2024-08-20
我看到的经验介绍是通过不断迭代Prompt版本来训练适合自己的LLM功能,这合理吗?
合理。因为LLM 应用优化是个迭代过程,应该不断尝试:尝试>验证>再尝试>再迭代。通过 prompt 工程(或结合 RAG)先获取第一批高质量输入输出数据,然后微调模型,模型性能提升后,数据质量进一步提升,将更优质的数据用于模型训练,然后更好的模型产出更好的数据,如此循环,构建正向迭代循环(也称数据飞轮)。
2024-04-20