直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图

回答

以下是为您整合的相关内容:

Ollama 框架

  1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。
  2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。
  3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。
  4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。
  5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。
  6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。
  7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。

基于 COW 框架的 ChatBot 实现步骤

  1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。
  2. 基于张梦飞同学的教程:【保姆级】一步一图,手把手教你把 AI 接入微信副本
  3. 实现内容:
    • 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。
    • 常用开源插件的安装应用。
  4. 正式开始前需知:
    • ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。
    • 风险与注意事项:
      • 微信端因非常规使用,有封号危险,不建议主力微信号接入。
      • 只探讨操作步骤,请依法合规使用。
        • 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。
        • 禁止用于任何非法目的。
        • 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。
  5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。
  6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI 等。
  7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。
  8. 多部署方法:本地运行、服务器运行、Docker 的方式。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

1.支持多种大型语言模型:Ollama支持包括通义千问、Llama 2、Mistral和Gemma等在内的多种大型语言模型,这些模型可用于不同的应用场景。2.易于使用:Ollama旨在使用户能够轻松地在本地环境中启动和运行大模型,适用于macOS、Windows和Linux系统,同时支持cpu和gpu。3.模型库:Ollama提供了一个模型库,用户可以从中下载不同的模型。这些模型有不同的参数和大小,以满足不同的需求和硬件条件。Ollama支持的模型库可以通过https://ollama.com/library进行查找。4.自定义模型:用户可以通过简单的步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。5.API和集成:Ollama还提供了REST API,用于运行和管理模型,以及与其他应用程序的集成选项。6.社区贡献:Ollama社区贡献丰富,包括多种集成插件和界面,如Web和桌面应用、Telegram机器人、Obsidian插件等。7.总的来说,Ollama是一个为了方便用户在本地运行和管理大型语言模型而设计的框架,具有良好的可扩展性和多样的使用场景。后面在捏Bot的过程中需要使用Ollama,我们需要先安装,访问以下链接进行下载安装。https://ollama.com/download/安装完之后,确保ollama后台服务已启动(在mac上启动ollama应用程序即可,在linux上可以通过ollama serve启动)。我们可以通过ollama list进行确认,当我们还没下载模型的时候,正常会显示空:可以通过ollama命令下载模型,目前,我下载了4个模型:几个模型简介如下:

熊猫大侠:基于COW框架的ChatBot实现步骤

作者:熊猫大侠COW是基于大模型搭建的Chat机器人框架,将多模型塞进自己的微信里实现方案。基于这篇张梦飞同学也写了一个更适合小白的使用教程:[【保姆级】一步一图,手把手教你把AI接入微信副本](https://waytoagi.feishu.cn/wiki/A9w1wUcXSihF6XkeKVic8CXxnHb)本文带你实现:1、打造属于自己的ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI画图等等)2、常用开源插件的安装应用正式开始前你需要知道:ChatBot相较于在各大模型网页端使用区别:本实现思路需要接入大模型API的方式实现(API单独付费)风险与注意事项:1、微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。2、本文只探讨操作操作步骤,请依法合规使用-大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求。-禁止将此操作用于任何非法目的。-处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。多平台接入:微信、企业微信、公众号、飞书、钉钉等。多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI等等多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。多部署方法:本地运行、服务器运行、Docker的方式

熊猫大侠:基于COW框架的ChatBot实现步骤

作者:熊猫大侠COW是基于大模型搭建的Chat机器人框架,将多模型塞进自己的微信里实现方案。基于这篇张梦飞同学也写了一个更适合小白的使用教程:[【保姆级】一步一图,手把手教你把AI接入微信副本](https://waytoagi.feishu.cn/wiki/A9w1wUcXSihF6XkeKVic8CXxnHb)本文带你实现:1、打造属于自己的ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI画图等等)2、常用开源插件的安装应用正式开始前你需要知道:ChatBot相较于在各大模型网页端使用区别:本实现思路需要接入大模型API的方式实现(API单独付费)风险与注意事项:1、微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。2、本文只探讨操作操作步骤,请依法合规使用-大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求。-禁止将此操作用于任何非法目的。-处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。多平台接入:微信、企业微信、公众号、飞书、钉钉等。多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI等等多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。多部署方法:本地运行、服务器运行、Docker的方式

其他人在问
可灵api
ComfyUI GeminiAPI 相关内容如下: 用途:用于在 ComfyUI 中调用 Google Gemini API。 安装说明: 手动安装: 1. 将此存储库克隆到 ComfyUI 的 custom_nodes 目录。 2. 安装所需依赖: 如果使用 ComfyUI 便携版。 如果使用自己的 Python 环境。 通过 ComfyUI Manager 安装: 1. 在 ComfyUI 中安装并打开 ComfyUI Manager。 2. 在 Manager 中搜索“Gemini API”。 3. 点击安装按钮,安装完成后重启 ComfyUI。 节点说明: Gemini 2.0 image:通过 Gemini API 生成图像的节点。 输入参数: prompt(必填):描述想要生成的图像的文本提示词。 api_key(必填):Google Gemini API 密钥(首次设置后会自动保存)。 model:模型选择。 width:生成图像的宽度(512 2048 像素)。 height:生成图像的高度(512 2048 像素)。 temperature:控制生成多样性的参数(0.0 2.0)。 seed(可选):随机种子,指定值可重现结果。 image(可选):参考图像输入,用于风格引导。 输出: image:生成的图像,可以连接到 ComfyUI 的其他节点。 API Respond:包含处理日志和 API 返回的文本信息。 使用场景: 创建独特的概念艺术。 基于文本描述生成图像。 使用参考图像创建风格一致的新图像。 基于图像的编辑操作。 API key 获取:在 Google 的 AI Studio 申请一个 API key(需要网络环境),有免费的额度,访问 https://aistudio.google.com/apikey?hl=zhcn 。 温度参数说明:温度值范围为 0.0 到 2.0,较低的温度(接近 0)生成更确定性、可预测的结果,较高的温度(接近 2)生成更多样化、创造性的结果,默认值 1.0 平衡确定性和创造性。 注意事项: API 可能有使用限制或费用,请查阅 Google 的官方文档。 图像生成质量和速度取决于 Google 的服务器状态和您的网络连接。 参考图像功能会将您的图像提供给 Google 服务,请注意隐私影响。 首次使用时需要输入 API 密钥,之后会自动存储在节点目录中的 gemini_api_key.txt 文件中。
2025-04-14
grok API能用在什么软件上
Grok API 可以用在以下软件上: 1. 扣子工作流:可以用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,还能参考相关教程将扣子接入微信机器人,但有微信封号风险。 2. 沉浸式翻译:由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品可以用来填 APIKEY 调用的场景,比如沉浸式翻译这个网页翻译工具。 3. 手机类 APP:比如通过快捷方式接入 Siri。 此外,xAI 发布的 Grok 3 API 提供了多个模型版本,如 grok3beta、mini、fast 等,满足不同场景需求,上下文窗口达 131K,支持图像输入输出,但当前不支持联网或实时访问外部网页与数据。
2025-04-12
deepseek api
Jina DeepSearch 是一项基于推理大模型的深度搜索服务,其 API 已上线且开源。它可以在搜索时进行不断推理、迭代、探索、读取和归纳总结,直到找到最优答案为止。与 OpenAI 和 Gemini 不同,Jina DeepSearch 专注于通过迭代提供准确的答案,而不是生成长篇文章。它针对深度网络搜索的快速、精确答案进行了优化,而不是创建全面的报告。 使用入口:官方深度搜索 API 与 OpenAI API 架构完全兼容,您可以前往官网(jina.ai/deepsearch)了解详情;或者前往应用页面(search.jina.ai)体验。 此外,北京时间 00:30 至 08:30 期间,DeepSeek API 价格大幅下调。DeepSeekV3 降至原价的 50%,DeepSeekR1 低至 25%,鼓励用户在夜间空闲时段调用 API,以更低成本享受服务。
2025-03-30
api
以下是关于 API 的相关信息: ComfyUI GeminiAPI: 用于在 ComfyUI 中调用 Google Gemini API。 安装说明: 手动安装:将存储库克隆到 ComfyUI 的 custom_nodes 目录,安装所需依赖(根据使用的 ComfyUI 版本有所不同)。 通过 ComfyUI Manager 安装:在 ComfyUI 中安装并打开 ComfyUI Manager,搜索“Gemini API”并点击安装按钮,安装完成后重启 ComfyUI。 节点说明: Gemini 2.0 image:通过 Gemini API 生成图像的节点。输入参数包括必填的 prompt、api_key,可选的 model、width、height、temperature、seed、image 等。输出包括生成的图像和 API Respond。使用场景包括创建独特的概念艺术、基于文本描述生成图像、使用参考图像创建风格一致的新图像、基于图像的编辑操作。 API 与速率限制: 速率限制是 API 对用户或客户端在指定时间内访问服务器的次数施加的限制。 速率限制的原因包括防止滥用或误用 API、确保公平访问、管理基础设施负载等。 OpenAI 的 API 提供商在 API 使用方面有限制和规定,不同用户类型可获得不同的速率限制,若请求超过限制将返回错误响应。 关于 API 的一般性描述: API 就像是一个信差,接受一端的请求,告诉系统用户想要做的事情,然后把返回的信息发回。 学习使用 GPT 的 Action 工作流包括:确定想要的 GPT 及是否需要外部数据,寻找 API 文档或开发 API 以及编写 Action 里的 Schema 和 Prompt。 对 Action 感兴趣可以从系统了解和学习 API 相关知识、在网上寻找可用的 API 练习、发掘 GPT Action 更多潜力等方向继续前进。
2025-03-29
API是什么意思有什么用
API 是应用程序编程接口(Application Programming Interface)的缩写。它是软件之间进行交互和数据交换的接口,使得开发者能够访问和使用另一个程序或服务的功能,而无需了解其内部实现的详细信息。 API 就像是一个信差,接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 APIKey 是一种实现对 API 访问控制的方法,通常是一串字符串,用于身份验证和访问控制。当开发者或应用程序尝试通过 API 与另一个程序或服务交互时,APIKey 作为请求的一部分被发送,以证明请求者具有调用该 API 的权限。APIKey 帮助服务提供商识别调用者身份,监控和控制 API 的使用情况,以及防止未经授权的访问。 要使用 API,通常需要去官网寻找 API 文档,API 的规则一般会写在网站的开发者相关页面或 API 文档里。例如,TMDB 的搜索电影 API 文档的网址是:https://developer.themoviedb.org/reference/searchmovie 。在 API 文档中,会详细告知如何使用相应的 API,包括请求方法、所需的查询参数等。您可以在文档中进行相关配置和操作。 登录网站寻找 Apikeys 创建新的密钥(记得保存好、不要泄露)。使用 APIKEY 可能需要单独充值,一共有两种模式可以使用: 1. 使用官方的 key 网站:https://platform.openai.com/apikeys 创建好您的 key 后记得复制保存。 2. 如果觉得充值比较麻烦可以考虑用第三方的网站:https://www.gptapi.us/register?aff=WLkA ,这个充值起来方便一些,模型选择也可以多一些。
2025-03-29
哪个大模型的API接口免费?
以下是一些提供免费 API 接口的大模型: 1. Silicon 硅基接口:有众多开源模型(Yi、Qwen、Llama、Gemma 等)免费使用,还赠送 14 元体验金,有效期未知。注册和使用地址为,邀请码:ESTKPm3J。注册登录后,单击左边栏的 API 密钥,单击新建 API 密钥,单击密钥即可完成 API 密钥的复制。它支持多种大模型,也支持文生图、图生图、文生视频。 2. 智普 GLM4 接口:在 BigModel.cn 上通过专属邀请链接注册即可获得额外 GLM4Air 2000 万 Tokens 好友专属福利。进入个人中心,先完成实名认证,再单击左边栏 API KEYS 或右上角的 API 密钥,进入后单击右上角的添加 API,鼠标移至密钥上方,单击复制即可得到智普的 API key。 3. 阿里的通义千问大模型:打开链接,创建个 API key。 4. 智谱 AI(ChatGLM):有免费接口。 5. 科大讯飞(SparkDesk):有免费接口。 此外,谷歌的 Gemini 大模型(gemini 1.5)和海外版 Coze 的 GPT4 模型是免费的,但需要给服务器挂梯子。
2025-03-28
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
提示词网站
以下是为您精选的一些提示词网站: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney。网站地址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快。网站地址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出。网站地址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享。网站地址: Prompt Extend:让 AI 帮你自动拓展 Prompt。网站地址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比。网站地址: PromptKnit:The best playground for prompt designers。网站地址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt。网站地址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。网站地址: LangChain Hub:提示词管理工具,LangChain 推出了 LangChain Hub,一个提示词上传、浏览、拉取和管理的工具。网站地址: 微软 Prompt Flow:微软发布开源的 LLM 开发工具集 Prompt flow,它简化了基于 LLM 的人工智能应用程序的端到端开发周期,从构思、原型设计、测试、评估到生产部署和监控,对于简单工作流非常实用。网站地址: 与 SD 相关的提示词网站: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
图生图网站排名推荐
以下是为您推荐的图生图网站排名: 1. 文生图: Imagen 3:真实感满分,指令遵从强。 Recraft:真实感强,风格泛化很好,指令遵从较好(会受风格影响)。 Midjourney:风格化强,艺术感在线,但会失真,指令遵从较差。 快手可图:影视场景能用,风格化较差。 Flux.1.1:真实感强,需要搭配 Lora 使用。 文生图大模型 V2.1L(美感版):影视感强,但会有点油腻,细节不够,容易糊脸。 Luma:影视感强,但风格单一,糊。 美图奇想 5.0:AI 油腻感重。 腾讯混元:AI 油腻感重,影视感弱,空间结构不准。 SD 3.5 Large:崩。 2. 图生视频: pd 2.0 pro:即梦生成的画面有点颗粒感,p2.0 模型还是很能打的,很适合做一些二次元动漫特效,理解能力更强,更适合连续运镜。 luma 1.6:画面质量挺好,但是太贵了。 可灵 1.6 高品质:YYDS! 海螺01live:文生视频比图生视频更有创意,图生也还可以,但是有时候大幅度动作下手部会出现模糊的情况,整体素质不错,就是太贵了。 runway:我的快乐老家,画面质量不算差,适合做一些超现实主义的特效、经特殊就容镜头的。 智谱 2.0:做的一些画面特效挺出圈的,适合整过,但是整体镜头素质还差点,好处就是便宜,量大,管饱,还能给视频加音效。 vidu1.5:二维平面动画的快乐老家,适合做特效类镜头,单镜头也很惊艳,大范围运镜首尾帧 yyds!就是太贵了!!!!! seaweed 2.0 pro:s2.0 适合动态相对小的,更适合环绕旋转运镜动作小的。 pixverse v3 高品质:pincerse 的首尾帧还是非常能打的,就是画面美学风格还有待提升的空间。 sora:不好用,文生视频挺强的,但是最需要的图生视频抽象镜头太多,半成品都算不上,避雷避雷避雷,浪费时间。 3. 小白也能使用的国内外 AI 生图网站: 可灵可图 1.5:https://app.klingai.com/cn/texttoimage/new 通义万相(每日有免费额度):https://tongyi.aliyun.com/wanxiang/creation 文心一言:https://yiyan.baidu.com/ 星流(每日有免费额度):https://www.xingliu.art/ Libiblib(每日有免费额度但等待较久):https://www.liblib.art/
2025-04-13
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
有没有免费制作数字人的网站?
以下是一些免费制作数字人的网站及使用方法: HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法:点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片。上传后效果如图所示,My Avatar处显示上传的照片。点开大图后,点击Create with AI Studio,进入数字人制作。写上视频文案并选择配音音色,也可以自行上传音频。最后点击Submit,就可以得到一段数字人视频。 DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法:点击上面的网址,点击右上角的Create vedio。选择人物形象,可以点击ADD添加照片,或者使用DID给出的人物形象。配音时,可以选择提供文字选择音色,或者直接上传一段音频。最后,点击Generate vedio就可以生成一段视频。打开自己生成的视频,可以下载或者直接分享给朋友。 KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很AI。 使用方法:点击上面的网址,注册后获得120免费k币,这里选择“照片数字人口播”的功能。点击开始创作,选择自定义照片。配音时,可以选择提供文字选择音色,或者直接上传一段音频。打开绿幕按钮,点击背景,可以添加背景图。最后,点击生成视频。 此外,在剪映中也可以生成数字人:在剪映右侧窗口顶部,打开“数字人”选项,选取一位免费的、适合的数字人形象,比如“婉婉青春”。选择数字人形象时,软件会播放声音,可判断是否需要,点击右下角的“添加数字人”,将其添加到当前视频中。软件会根据提供的内容生成对应音视频,并添加到当前视频文件的轨道中。左下角会提示渲染完成,可点击预览按钮查看效果。还可以为视频增加背景图片,删除先前导入的文本内容,点击左上角的“媒体”菜单并点击“导入”按钮,选择本地图片上传,将图片添加到视频轨道上,通过拖拽轨道右侧竖线使其与视频对齐。
2025-04-11
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
你都融合了哪些大语言模型?
以下是一些融合的大语言模型: 1. LuotuoChineseLLM: 地址: 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。 2. Linly: 地址: 简介:提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 LinlyChatFlow 对话模型。 3. ChatYuan: 地址: 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 4. ChatRWKV: 地址: 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,NovelChnEng,NovelCh 与 NovelChnEngChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。 此外,还有以下相关信息: 1. 本地部署资讯问答机器人: Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. AIGC 落地应用大全中的案例: Poe(强烈推荐): 推荐指数:????? 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。 此外支持分享用户和模型的对话内容。但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户。 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。 midjourney prompt 扩写 Chatbot 能力很惊人。
2025-04-08
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
大语言模型能力排行榜
以下是一些大语言模型能力排行榜的相关信息: Open LLM Leaderboard: 地址: 简介:由HuggingFace组织的一个LLM评测榜单,目前已评估了较多主流的开源LLM模型。评估主要包括AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA四个数据集上的表现,主要以英文为主。 chinesellmbenchmark: 地址: 简介:中文大模型能力评测榜单,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b等开源大模型,多维度能力评测。不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 聊天机器人竞技场:由伯克利的一个团队管理,根据ELO评级对不同的语言模型进行排名,计算ELO的方式与国际象棋中的计算方式非常相似。 智源评测:豆包模型在其中表现出色,荣获大语言模型第一,视觉理解第二、文生图第二、文生视频第二,在匿名投票竞技场中排名第二,仅次于OpenAI。 地址:
2025-03-31
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14