Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

LLama是什么?

Answer

LLama 是 Meta 推出的一系列语言模型。

LLama 具有以下特点和应用:

  1. 在法律领域有相关的微调模型,如 Lawyer LLaMA 等,这些模型在大规模法律语料上进行了预训练和指令微调,旨在为法律从业者和用户提供准确可靠的法律咨询服务。
  2. 有专门用于编写代码的 Code Llama ,它基于 Llama 2 平台构建,包括多种模型以适应不同需求,其训练配方和模型权重可在 Github 仓库获取。
  3. 一共有 4 个模型尺寸,其出发点包括只使用公开数据集以保证数据平等,用更多数据训练更小网络等。网络结构采用 decoder-only 的方式,使用了 SentencePiece 实现的 PBE 编码方式、PreNorm 、SwiGLU 、RoPE 旋转位置编码等技术。同时还介绍了 RMSNorm 等相关技术。
Content generated by AI large model, please carefully verify (powered by aily)

References

LLM开源中文大语言模型及数据集集合

LaWGPT:基于中文法律知识的大语言模型地址:[https://github.com/pengxiao-song/LaWGPT](https://github.com/pengxiao-song/LaWGPT)简介:该系列模型在通用中文基座模型(如Chinese-LLaMA、ChatGLM等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。LexiLaw:中文法律大模型地址:[https://github.com/CSHaitao/LexiLaw](https://github.com/CSHaitao/LexiLaw)简介:LexiLaw是一个基于ChatGLM-6B微调的中文法律大模型,通过在法律领域的数据集上进行微调。该模型旨在为法律从业者、学生和普通用户提供准确、可靠的法律咨询服务,包括具体法律问题的咨询,还是对法律条款、案例解析、法规解读等方面的查询。Lawyer LLaMA:中文法律LLaMA地址:[https://github.com/AndrewZhe/lawyer-llama](https://github.com/AndrewZhe/lawyer-llama)简介:开源了一系列法律领域的指令微调数据和基于LLaMA训练的中文法律大模型的参数。Lawyer LLaMA首先在大规模法律语料上进行了continual pretraining。在此基础上,借助ChatGPT收集了一批对中国国家统一法律职业资格考试客观题(以下简称法考)的分析和对法律咨询的回答,利用收集到的数据对模型进行指令微调,让模型习得将法律知识应用到具体场景中的能力。

【翻译】不止Cursor,2024年AI代码工具终极指南,还有这么多努力的探索

!Code Llama是一组专门用于编写代码的大语言模型,基于Llama 2平台构建。它包括多种模型以适应不同需求:通用Code Llama、专门用于Python任务的Code Llama-Python,以及基于指令的Code Llama-Instruct。模型大小有7 B、13 B和34 B三种,最多可处理16 k Token输入,部分改进后最多可处理100 k Token。7 B和13 B模型还支持内容补全功能。Code Llama的训练配方和[模型权重](https://ai.meta.com/llama/)可在[Github仓库](https://github.com/facebookresearch/codellama)获取。

(2)初探LLM基座模型

Meta可谓是LLM开源一哥,LLaMA是其代表作,一共有4个模型尺寸,出发点如下只使用公开的数据集,保证所有人在数据面前平等用更多的数据训练更小网络,例如用1T的token训练7B的模型和13B模型,用1.4T的token训练33B和65B模型。这一点是参考了Chinchilla的结论。网络结构也是decoder-only的方式,跟GPT3相比异同如下使用了SentencePiece实现的PBE的编码方式使用了PreNorm,这样收敛稳定一些。同时用RMSNorm,就是LayerNorm里面没有减均值项和beta项使用SwiGLU,即swish激活+GeLU调制。由于SwiGLU引入了额外的参数矩阵,原始FFN需要做相应的砍小用了苏剑林老师提出的RoPE旋转位置编码,核心思想是通过绝对位置编码的方式实现相对位置编码,理论推导见[原文](https://zhuanlan.zhihu.com/p/359502624)RMSNormRMSNorm是本文要介绍的第3种norm,其中RMS(root mean square)是均方根的含义$$\text{RMS}(x)=\sqrt{\frac{1}{d}\sum_{i=1}^d x_i^2}$$同时省去了beta,则可以得到$$\text{RMSNorm}(x)=\frac{x}{\text{RMS}(x)}\cdot\gamma$$SwiGLU激活函数SwiGLU和前面介绍的GeGLU非常相似,只是把GeLU激活换成了Swish激活,如下所示

Others are asking
本地用Ollama部署模型,使用哪个ChatBox客户端好?
目前在本地使用 Ollama 部署模型时,没有特别突出或被广泛推荐的特定 ChatBox 客户端。不同的客户端可能在功能、界面和兼容性方面存在差异,您可以根据自己的需求和使用习惯进行选择和尝试。常见的一些客户端包括但不限于 Web 端的简单界面工具,或者一些具有特定功能扩展的桌面应用程序。但具体哪个最适合您,还需要您亲自测试和评估。
2025-03-27
llamaindex
LlamaIndex 是一个为构建大型语言模型(LLM)应用而设计的开发框架,具有以下特点和优势: 1. 为开发人员提供强大且灵活的工具,能更有效地理解和处理文本数据。对于熟悉 LangChain 的开发者来说不陌生。 2. 核心优势在于对大型语言模型的深度支持,允许利用如 GPT3.5 Turbo 这样的模型执行多种文本处理任务,如文档问答、文章生成和自动翻译等。 3. 特别提供构建文档问答系统的功能,能自动从大量文档中检索相关信息并生成答案,对处理大量知识信息的领域有价值。 4. 允许对嵌入模型进行微调以适应特定任务需求,提升文档问答系统性能。 5. 支持连接不同类型的数据源,包括结构化、半结构化和非结构化数据,为应用程序提供全面信息。 6. 设计注重简化开发流程,复杂的 NLP 任务通过少量代码即可实现,无需深入了解底层复杂性,降低开发大型语言模型应用的门槛,提升开发效率和应用性能。 7. 之前叫 GPT Index,是更高一层 LangChain 的抽象。简化了 LangChain 对文本分割、查询的接口,提供更丰富的 Data Connector。只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。 其 GitHub 地址:https://github.com/runllama/llama_index/
2025-03-20
ollama框架有哪些推荐
Ollama 是一个开源的框架,具有以下特点和功能: 1. 旨在简化在本地运行大型语言模型(LLM)的过程,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低使用门槛,适合初学者或非技术人员使用。 2. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 3. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 4. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 5. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 6. 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 7. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装 Ollama 可通过官方下载地址 https://ollama.com/download 进行。安装完成后,可通过访问相关链接判断是否安装成功,在命令行中运行相应命令即可使用,如运行本地大模型的命令。还可通过 ollama list 确认模型下载情况。 此外,在 termux 软件中进行相关操作时,需执行如 aptget update、安装 curl 命令、安装 ollama 命令等。启动模型时,以 phi3 模型为例,在 termux 软件中执行命令 ollama run phi3 并等待下载完成。当然,Ollama 还有很多其他模型,如有需要可在 ollama 官网自行查看命令与下载。
2025-03-14
本地部署ollama+deep seek后怎么有效搭机械领域建知识库或微调为机械领域
以下是本地部署 ollama + deep seek 后有效搭建机械领域知识库或微调为机械领域的步骤: 1. 下载 Ollama 程序:官方网址为 https://ollama.com/ 。默认下载到 C 盘,若想修改安装目录到 D 盘,后续会有相关说明。下载完成后,右下角会出现 Ollama 的图标,打开命令行输入相应命令回车。根据自身独立显卡性能选择模型,如英伟达 2060Super 可选择 Deepseekr1:14b 的模型。若下载速度慢,可按 Ctrl+C 强制退出重新下载。下载完毕后,再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相应命令,下载好后直接退出终端。 2. 配置模型:返回 RAGFlow 中,打开右上角设置,进入模型提供商进行配置。选择 Ollama,并配置相关信息,基础 URL 按要求设置,设置完成后点击确定。 3. 导入嵌入模型:导入一个嵌入模型用于文本向量化。 4. 设置系统模型:完成相关设置。 5. 创建知识库:返回知识库,进入数据集,可导入文件或设置文件夹当作知识库,自行设置。导入完毕后,对文件进行解析,解析速度取决于本机 GPU 性能,越好的显卡解析越快。解析完成后,进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。
2025-03-07
请给我找一个安装ollama-deep-researcher的完整教程,用于windows上。
很抱歉,目前没有关于在 Windows 上安装 ollamadeepresearcher 的完整教程。建议您通过以下途径获取相关信息: 1. 官方网站:访问 ollamadeepresearcher 的官方网站,查找针对 Windows 系统的安装指南。 2. 相关技术论坛:在专业的技术论坛上搜索相关主题,可能会有其他用户分享的安装经验和教程。 3. 视频平台:部分视频平台上可能有关于此软件在 Windows 上安装的演示视频。
2025-03-06
如何在电脑上用chatbox框架,使用ollama搭建deepseek模型
在电脑上使用 Chat Box 框架,通过 Ollama 搭建 DeepSeek 模型的步骤如下: 1. 阿里云百炼平台: 百炼平台的模型广场有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 百炼平台无需部署,可直接使用 DeepSeek R1 模型。 DeepSeek R1 模型的价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送了 100 万 token,LLAVA 限时免费。 使用 DeepSeek R1 模型需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态可以识别更多输入信息,如读文件、图片等,而 DeepSeek R1 本身不是多模态模型。 通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 DeepSeek R1,并获取 API key。 API key 可删除旧的并重新创建,方便本地软件连接。 2. Docker + RAGFlow + Ollama 搭建: 返回 RAGFlow 中,打开右上角设置,进入模型提供商。 选择 Ollama,配置相关信息,模型取决于运行的模型。 配置基础 URL。 导入一个 embedding 模型,用于文本向量化。 设置系统模型设置。 进入数据集,导入文件,可设置文件夹当作知识库。 对文件进行解析,解析速度取决于本机 GPU 性能。 解析好之后,进入检索测试。 测试没问题,可进入聊天界面,助理设置可自行设置。 对于开源模型,如 DeepSeek、Llama 等,可以使用以下方式: 1. Inference Provider:使用 Together AI 等推理服务提供商,在线体验和调用各种开源模型。 2. LM Studio:使用 LM Studio 等本地应用程序,在个人电脑上运行和部署较小的开源模型。
2025-03-03