Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

RAG优化

Answer

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。

大语言模型(LLM)需要 RAG 进行检索优化,原因在于 LLM 存在一些缺点:

  1. LLM 无法记住所有知识,尤其是长尾知识,对其接受能力不高。
  2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。
  3. LLM 的输出难以解释和验证,存在黑盒、不可控及受幻觉干扰等问题。
  4. LLM 容易泄露隐私训练数据。
  5. LLM 的规模大,训练和运行成本高。

RAG 具有以下优点:

  1. 数据库对数据的存储和更新稳定,无学习风险。
  2. 数据库的数据更新敏捷,可解释且不影响原有知识。
  3. 数据库内容明确、结构化,结合模型理解能力可降低大模型输出出错可能。
  4. 知识库存储用户数据便于管控隐私,且可控、稳定、准确。
  5. 数据库维护可降低大模型训练成本。

在商业化问答场景中,优化 AI 更准确回答问题的过程称为 RAG。RAG 由检索器和生成器组成,检索器从外部知识中找到相关信息,生成器利用这些信息生成精确连贯的答案,适合处理需要广泛知识的任务。

目前,业界针对 RAG 的优化主要围绕“问题输入”“检索相关信息”“生成回复”这三个环节开展,如通过 COT 等方式提升 LLM 对问题的理解程度,使用特定方式提升语义搜索准确率,选择和优化 embedding 算法保留原始数据信息。但即便每个环节优化到 90%,最终准确率也只有 72%。有一种不用向量也可以 RAG 的方法,基于结构化数据和 LLM 的交互,具有准确、高效、灵活、易扩展等优势。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:RAG 是什么?

RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,它旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。简单来说,就是通过检索的模式,为大语言模型的生成提供帮助,从而使大模型生成的答案更符合要求。[heading2]为什么LLM需要RAG?[content]众所周知,大模型已经在很多领域和问题下都取得了很好的效果,那为什么还需要RAG进行检索优化呢?[heading3]LLM的缺点[content]1.LLM无法记住所有知识,尤其是长尾的。受限于训练数据、现有的学习方式,对长尾知识的接受能力并不是很高;长尾数据是指数据集中某些类别数量较少,而其他类别样本数较多的不平衡“长尾”状态。例如在自然语言处理中,一些少见的词汇出现频率很低,而常见的词汇出现频率很高。2.LLM的知识容易过时,而且不好更新。只是通过微调,模型的接受能力其实并不高而且很慢,甚至有丢失原有知识的风险;3.LLM的输出难以解释和验证。一方面最终的输出的内容黑盒且不可控,另一方面最终的结果输出可能会受到幻觉之类的问题的干扰;4.LLM容易泄露隐私训练数据。用用户个人信息训练模型,会让模型可以通过诱导泄露用户的隐私;5.LLM的规模大,训练和运行的成本都很大。[heading3]RAG的优点[content]1.数据库对数据的存储和更新是稳定的,不像模型会存在学不会的风险。2.数据库的数据更新可以做得很敏捷,增删改查可解释,而且对原有的知识不会有影响。3.数据库的内容是明确、结构化的,加上模型本身的理解能力,一般而言数据库中的内容以及检索算法不出错,大模型的输出出错的可能就大大降低。4.知识库中存储用户数据,为用户隐私数据的管控带来很大的便利,而且可控、稳定、准确。5.数据库维护起来,可以降低大模型的训练成本,毕竟新知识存储在数据库即可,不用频繁更新模型,尤其是不用因为知识的更新而训练模型。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

开发:LangChain应用开发指南-不用向量也可以RAG

综上所述,我们可以得到这样一个公式,由于这三个环节是串行的,准确率最终是三者的乘积,因而任何一个环节的短板都将导致整体的准确率完全无法保证。目前来看,业界针对RAG的优化也主要是围绕这三个环节开展通过COT等方式提升LLM对问题的理解程度使用sentence window retrive、rerank等方式提升语义搜索的准确率通过针对的选择和优化embedding算法来最大化的保留原始数据的信息。然而由于最终结果是三者的乘积,即便是耗费大量精力将每个环节都优化到90%,最终乘积也只有72%。那么,有没有一种方法,可以避免数据向量化和语义搜索的问题,直接利用原始数据和LLM的交互,提高RAG的准确率和效率呢?本文的目的就是介绍一种不用向量也可以RAG的方法,它基于结构化数据和LLM的交互,实现了一种新颖的RAG模式,具有准确、高效、灵活、易扩展等优势。

Others are asking
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来完成,如 Meta AI 引入的 RAG 方法。RAG 把信息检索组件和文本生成模型结合,可微调,内部知识修改高效,无需重新训练整个模型。它会接受输入并检索相关支撑文档,给出来源,与原始提示词组合后送给文本生成器得到输出,能适应事实变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识易过时且不好更新、输出难以解释和验证、易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库存储和更新稳定且无学习风险、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本。 在 RAG 系统开发中存在 12 个主要难题,并已有相应的解决策略。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
飞书智能伙伴创建平台 RAG实现
飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,能提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升,为企业探索大语言模型应用新篇章、迎接智能化未来提供理想选择。 在飞书智能伙伴创建平台上实现 RAG 相关应用有多种方式: 1. 利用飞书的知识库智能问答技术,引入 RAG 技术,通过机器人帮助用户快速检索内容。 2. 可以使用飞书的智能伙伴功能搭建 FAQ 机器人,了解智能助理的原理和使用方法。 3. 本地部署资讯问答机器人,如通过 Langchain + Ollama + RSSHub 实现 RAG,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。例如使用 feedparse 解析 RSS 订阅源,ollama 跑大模型(使用前需确保服务开启并下载好模型),使用文本向量模型 bgem3(如从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效向量存储)。 使用飞书智能伙伴创建平台的方式: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,需在找到最新二维码),点击加入,直接@机器人。 2. 在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 创建问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,存在局限性。 3. 需要用更先进的 RAG 技术解决问题。 4. 在群中提供快速检索信息的方式,使用更便捷。 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区情况,讨论了相关技术和应用场景,并介绍了企业级 agent 方面的实践。
2025-04-08
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景如知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-03
问题定义优化助手
以下是关于问题定义优化助手的相关内容: 市面上有很多 Prompt 框架,框架可理解为从不同角度为思考问题提供解决方案的路径。一个问题的解决通常包括问题背景(所需角色、具备的能力和资源)、问题目标(期望的输出结果和验收标准,如提供商务谈判的完整过程)、提供的资料信息、限制条件(如预算限制等)、角色技能(为目标服务所需调动的技能,如熟悉某个领域的商业案例)和工作流(解决问题时需完成的任务步骤,如信息收集、谈判策略设定等)。细致的内容可能得到更好的结果,但也可能限制可能性,这是一个平衡和折中的结果。 效果呈现方面,体验地址为 。 3 月 5 日作业要求大家看完小七姐的 5 篇入门指南并动手实践,写出自己的一条 prompt 及对话分享出来,提交格式为创作思路和目标|prompt 展示|输出结果。例如无上的目标是让大模型对自己的提问内容进行优化,其思路包括询问大模型“更好的提问”方法论、让 kimi 分析并优化等步骤。 在从 AI 助教到智慧学伴的应用探索中,提到了在不同学段和学科的应用场景,以及向 AI 大模型提问的问题设计,还涉及教育提示词优化助手。
2025-04-11
AI如何优化库存管理、员工排班
以下是关于 AI 优化库存管理和员工排班的相关内容: 库存管理: 1. 利用 AI 预测需求,优化库存管理,减少积压和缺货情况。 2. AI 可以分析不同产品的销售速度、市场趋势等数据,为库存的补货和调整提供决策依据。 3. 通过 AI 生成的库存周转分析工具,预测滞销品并推荐促销策略。 员工排班: 1. 智能排班优化,根据客流预测自动调整员工排班表。 2. 实时话术提示工具,在员工与客户沟通时 AI 推荐应答策略。 3. 自动化周报生成,汇总销售数据、客户反馈生成可视化报告,为排班提供参考。 4. 培训模拟考试系统,基于产品知识库生成随机测试题,提升员工能力,优化排班安排。 5. 客户潜力评分系统,根据消费行为自动标记高价值客户,据此安排合适的员工服务。 6. 舆情预警系统,实时监测负面评价并推送处理建议,灵活调整员工工作安排。 7. 客户流失预测模型,通过行为数据预警流失风险,合理安排员工进行客户维护。 8. 会议纪要自动生成,转录会议录音并提取任务清单,辅助排班决策。 9. 员工满意度分析,通过匿名问卷分析员工工作痛点,优化排班以提高员工满意度。
2025-04-09
提示词优化工具
以下是关于提示词优化工具的相关信息: /shorten 命令: 分析提示:最短的提示,Option 5:tower of donuts, sprinkles 产生了最接近原始目标的图像。 分析结果:许多填充词,如“异想天开”“令人着迷”和“杰作”可以省略。了解“塔”和“魔法”被认为是重要的标记有助于解释为什么一些图像是用童话城堡元素生成的。了解这一点提供了一条线索:如果目标是制作一堆美味的甜甜圈,则应该从提示中删除“神奇”。 特点:该/shorten 命令是一个工具,可帮助您探索 Midjourney Bot 如何解释标记并尝试单词,但它可能不适用于所有主题和提示风格。 星流一站式 AI 设计工具: 下方 prompt 输入框: 可以输入提示词、使用图生图功能辅助创作。 提示词相关: 什么是提示词:用于描绘画面,支持中英文输入。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发)。 如何写好提示词: 提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。对已有的提示词权重进行编辑。 辅助功能: 翻译功能:一键将提示词翻译成英文。 删除所有提示词:清空提示词框。 会员加速:加速图像生图速度,提升效率。 提示词优化:启用提示词优化后,帮您扩展提示词,更生动地描述画面内容。 预设词组:小白用户可以点击提示词上方官方预设词组,进行生图。
2025-04-08
全能写作优化指令
以下是为您提供的关于全能写作优化指令的相关内容: 拘灵遣将: 对文章中案例进行脱敏,替换人物姓名、时间和地点。 深化写作时,每次对话输出文章一个部分,各部分字数有具体要求,组合成可直接发布、吸引目标群体、高质量实用的公众号普法文章。 敕代表告诫,划定灵机工作边界、禁忌事项和具体要求。 令:初始化时用中文与用户对话并欢迎;牢记符与敕要求,除非用户明确调整,否则一直遵守;先请求用户提供案例洞察报告和目标群体,用户提供并输入“依律奉行”后,先输出纲要和写作方案。 集合 Deepseek 提示词方法论: 进阶控制技巧: 思维链引导:分步标记法,苏格拉底式追问。 知识库调用:领域限定指令、文献引用模式。 高级调试策略: 模糊指令优化:包括宽泛需求添加维度约束、主观表述量化标准。 迭代优化法:首轮生成获取基础内容、特征强化、风格调整、最终校验。 报告:GPT4 通用人工智能的火花 编程: 编写深度学习代码需掌握数学、统计学知识及熟悉相关框架和库。要求 GPT4 和 ChatGPT 编写自定义优化器模块,GPT4 响应在很大程度上与指令匹配,但忘记部分指令,ChatGPT 在应用动量时犯致命错误。
2025-04-08
需要优化工作规程文件,使用什么AI工具比较好
以下是一些可用于优化工作规程文件的 AI 工具及相关建议: 业务流程优化方面: 流程挖掘软件是一种常用的 AI 工具,它可以自动分析业务流程,并识别改进点。您需要先利用该工具分析当前的业务流程,收集关于业务流程的数据,如任务执行时间、顺序、参与者等,然后对收集到的数据进行分析,自动识别流程中的瓶颈、重复步骤或效率低下的环节。基于分析结果重新设计和优化流程,并将新设计的流程实施到日常业务中,持续监控其表现,根据实施结果和员工反馈进一步调整和优化流程。 文章润色方面: 以下是一些常见的文章润色 AI 工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。 创建工作流文件方面: 可以使用 Cursor 和 MCP 来创建工作流文件。首先创建一个名为 workflow.md 的文件,写入明确的指令,避免模糊表达,任务越细分越好。然后在对话窗口中告诉 AI 各个文件的对应关系。在使用过程中,Cursor 会请求您允许使用 MCP,记得点“同意”,经过多轮同意后,它会开始执行生成页面。需要注意的是,必须要用 claude sonnet 3.7,3.5 版本实测不行。
2025-04-01
AI 优化简历
以下是一些可以用于优化简历的 AI 工具: 1. ResumeMatcher:这是一个 AI 驱动的开源简历优化工具。它能提供智能关键词匹配、深入分析见解,提升简历通过 ATS 筛选的几率。采用 FastEmbed 计算简历与职位匹配度,结合 textacy 提取核心术语,精准优化简历内容。链接: 2. 超级简历优化助手:帮助用户优化简历提高求职成功率。超级简历优化助手分析简历内容并提供优化建议。 3. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,为简历摘要、工作经验和教育等专业部分编写内容,并在整个文档中保持一致的语调。 4. Rezi:是一个受到超过 200 万用户信任的领先 AI 简历构建平台。使用先进的 AI 技术自动化创建可雇佣简历的每个方面——写作、编辑、格式化和优化。 5. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合您的工具。
2025-03-30