Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

flux模型风格提示词

Answer

以下是关于 Flux 模型风格提示词的相关信息:

ComfyUI Flux redux

  • Redux 模型是轻量级的,可与 Flux.1[Dev]和 Flux.1[Schnell]配合使用,基于 1 个输入图像生成图像变体,无需提示,适合快速生成特定样式图像。
  • 往一张图上融合时,提示词最好描述图片背景颜色。
  • 将 Redux 模型下载到 comfyui/models/style_models,下载 sigclip_patch14-384.safetensors 到 ComfyUI/models/clip_vision。
  • 重绘节点为 ComfyUI-InpaintEasy,相关链接:https://github.com/CY-CHENYUE/ComfyUI-InpaintEasy。

ComfyUI FLUX 模型的安装部署

  • 模型 FLUX.1[dev]、FLUX.1[dev fp8]、FLUX.1[schnell]中,建议选择 dev 版本,显卡可以的用 fp16,显卡不够用的选 fp8。模型下载后放入 ComfyUI/models/unet/文件夹中。若爆显存,“UNET 加载器”节点中的 weight_dtype 可设置为 fp8 降低显存使用量,但可能稍降质量,默认的 weight_type 显存使用较大。
  • clip 方面,t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/文件夹里,相关链接:https://huggingface.co/comfyanonymous/flux_text_encoders/tree/main。可用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,有超过 32GB 内存建议用 fp16。
  • Vae 下载后放入 ComfyUI/models/vae 文件夹,相关链接:https://huggingface.co/black-forest-labs/FLUX.1-schnell/tree/main。
  • T5(/t5xxl_fp16.safetensors)的 clip 原本有输入输出,可能会导致提示词被吞,短提示效果差,训练 flux 或 sd3 时应尽量用长提示词或自然语言。

STYLE PROMPTS 风格

  • Stratospheric:关联流派为 Soundtrack、Classical、Orchestral。指高空和极高的音乐风格,具有高亢壮丽特质,典型用于表现高空和极高情感的音乐作品,示例为 Queen 的《Bohemian Rhapsody》。
  • Streetwise:关联流派为 Hip-Hop、Rap、R&B。指街头和世故的音乐风格,具有现实机智特质,典型用于表现街头和世故情感的音乐作品,示例为 Jay-Z 的《Empire State of Mind》。
  • Strength:关联流派为 Rock、Hard Rock、Arena Rock。指力量和坚强的音乐风格,具有强大坚定特质,典型用于表现力量和坚强情感的音乐作品,示例为 Survivor 的《Eye of the Tiger》。
  • Stressful:关联流派为 Progressive Rock、Psychedelic Rock、Classic Rock。指紧张和压力的音乐风格,具有紧张焦虑特质,典型用于表现紧张和压力情感的音乐作品,示例为 Pink Floyd 的《Time》。
  • Stretching:指延伸和扩展的音乐风格,具有延展渐进特质,典型用于表现延伸和扩展情感的音乐作品。
Content generated by AI large model, please carefully verify (powered by aily)

References

ComfyUI Flux redux

Redux模型是一个轻量级模型,可与Flux.1[Dev]和Flux.1[Schnell]配合使用,以基于1个输入图像生成图像变体,无需提示。它非常适合快速生成特定样式的图像。[heading3]移除背景[heading3]关于提示词[content]这里需要注意的是,如果要往一张图上融合,提示词最好描述下图片的背景颜色。[heading3]Redux模型位置[content]将Redux模型下载到comfyui/models/style_models下载sigclip_patch14-384.safetensors到ComfyUI/models/clip_vision[heading3]重绘节点[content]ComfyUI-InpaintEasyhttps://github.com/CY-CHENYUE/ComfyUI-InpaintEasy[heading3]工作流

ComfyUI FLUX

FLUX.1[dev]FLUX.1[dev fp8]FLUX.1[schnell],选一个.建议选择dev版本的,显卡可以的用fp16,显卡不够用的选fp8.模型下载后,放入,这个文件应该放在你的:ComfyUI/models/unet/文件夹中。如果爆显存了,“UNET加载器”节点中的weight_dtype可以控制模型中权重使用的数据类型,设置为fp8,这将使显存使用量降低一半,但可能会稍微降低质量.默认下的weight_type,显存使用比较大.[heading4]clip[content]t5xxl_fp16.safetensors和clip_l.safetensors,放在ComfyUI/models/clip/文件夹里面.https://huggingface.co/comfyanonymous/flux_text_encoders/tree/main可以使用t5xxl_fp8_e4m3fn.safetensors来降低内存使用率,但是如果你有超过32GB内存,建议使用fp16[heading4]Vae[content]下载后,放入ComfyUI/models/vae文件夹https://huggingface.co/black-forest-labs/FLUX.1-schnell/tree/main[heading3][heading3]T5(/t5xxl_fp16.safetensors)的这个clip,[content]原本是有一个输入输出的。就是有一半是应该空着的。会导致提示词被吞的情况,就是可能会有一半的提示词被吞掉了。所以短提示的效果会比较差。我们在训练flux或者sd3时候,应该尽量的去用长提示词或者自然语言。不要用短提示词。因为T5自带了50%的删标。

风格提示词|STYLE PROMPTS

关联流派:Soundtrack,Classical,Orchestral●Stratospheric定义/描述:Stratospheric指的是高空和极高的音乐风格,通常具有高亢和壮丽的特质。典型使用:用于表现高空和极高情感的音乐作品。示例:Queen的《Bohemian Rhapsody》。关联流派:Rock,Progressive Rock,Opera Rock●Streetwise定义/描述:Streetwise指的是街头和世故的音乐风格,通常具有现实和机智的特质。典型使用:用于表现街头和世故情感的音乐作品。示例:Jay-Z的《Empire State of Mind》。关联流派:Hip-Hop,Rap,R&B●Strength定义/描述:Strength指的是力量和坚强的音乐风格,通常具有强大和坚定的特质。典型使用:用于表现力量和坚强情感的音乐作品。示例:Survivor的《Eye of the Tiger》。关联流派:Rock,Hard Rock,Arena Rock●Stressful定义/描述:Stressful指的是紧张和压力的音乐风格,通常具有紧张和焦虑的特质。典型使用:用于表现紧张和压力情感的音乐作品。示例:Pink Floyd的《Time》。关联流派:Progressive Rock,Psychedelic Rock,Classic Rock●Stretching定义/描述:Stretching指的是延伸和扩展的音乐风格,通常具有延展和渐进的特质。典型使用:用于表现延伸和扩展情感的音乐作品。

Others are asking
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
我现在是学了一段时间的comfyui+flux,接下来准备学Python开发comfyui节点、对接模型,这样学下去方向有没有问题呢
您学习 ComfyUI 和 Flux 一段时间后准备学习 Python 开发 ComfyUI 节点并对接模型,这个方向是可行的。以下是一些相关的知识和要点供您参考: 工作流方面: 工作流节点可直接拖动单个节点到任意位置,也可按住 Control 键并用鼠标左键滑框选中多个节点,再按 Shift 键一起拖动。 选中节点后右键新建组,可修改组名、颜色等,组被覆盖时可直接拖动组。 选中节点后右键选择对齐方式,如顶部对齐、左边对齐等。 第三方节点的安装方式包括在 customer NODE manager 中安装、在 GitHub 上复制链接安装、通过终端输入指令安装、在秋叶启动器的版本管理中安装。 可通过 group by Parser 节点控制组,也可通过按住节点按 control b 跳过或按 control m 终止执行。 模型方面: 噪声强度由种子调节,种子固定噪声分布方式,噪声与 CLIP 无关,增大噪声设置值会增强模型对图片重绘的程度。 模型版本的提示词差异:1.5 以 tag 为主,XL 论文称以自然语言为主,但实际使用中因模型微调情况可能仍需用 tag。 Flux 模型有时生成黑图,可能有修复方案,需自行查询。图像生成结果为空,可能是 VAE 编码器与大模型未连接,调整连接后问题解决。 安装方面: 自动打标 joy_caption 副本的节点安装地址为 D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes。 安装步骤包括:(Comfyui evn python.exe)python m pip install rrequirements.txt 或点击 install_req.bat,注意 transformers 版本不能太低。 下载模型或者运行 ComfyUI 自动下载模型到合适文件夹,如从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 新版的 PuLID 解决了模型污染的问题,使用新版的节点需要禁用或者删除之前的 PuLID 节点,不然可能会有冲突问题。模型放在 ComfyUI\\models\\pulid 文件夹里面,注意用新版的。 如果使用 PuLID,还需要安装 EVA CLIP 等模型。
2025-03-21
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型,包括 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置随意,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程,完成后提示是否下载 hunyuan 模型,选择 n 不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集: 在数据集一栏中,点击右上角创建数据集。 输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。 Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,选择上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。 4. 模型效果预览提示词则随机抽取一个数据集中的标签填入。 5. 训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数。若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。 6. 按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 7. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择 Lora 和调节参数。
2025-03-15
flux ae.sft放在哪个文件夹
在 ComfyUI 中,flux ae.sft 应放在 ComfyUI/models/vae/ 文件夹下。 Flux 模型在 ComfyUI 中的使用,需要将相关模型放在对应的目录下。具体来说,t5xxl_fp16.safetensors 放在 ComfyUI/models/clip/ 目录下,clip_l.safetensors 放在 ComfyUI/models/clip/ 目录下,ae.safetensors 放在 ComfyUI/models/vae/ 目录下,flux1dev.safetensors 放在 ComfyUI/models/unet/ 目录下。flux1dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。
2025-03-07
ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUI-aki(1)\ComfyUI-aki-v1.6\ComfyUI\models\checkpoints\flux1-dev-fp8.safetensors
很抱歉,根据您提供的错误信息“ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUIaki\ComfyUIakiv1.6\ComfyUI\models\checkpoints\flux1devfp8.safetensors”,暂时无法明确具体的问题原因。可能是模型文件格式不被识别,或者文件路径存在错误等。建议您检查文件的完整性和正确性,确保其符合相关软件的要求。
2025-03-07
midjourney_whisper_flux_lora_v01
以下是关于您提到的“midjourney_whisper_flux_lora_v01”的相关信息: 1. XLabsAI 发布了 6 个不同的 Lora,包括 Midjourney 风格、写实风格、动漫风格、迪斯尼风格、风景风格等,并提供了相应示例。 2. 文生图模型排序(从高到低):Imagen 3 真实感满分,指令遵从强;Recraft 真实感强,风格泛化很好,指令遵从较好(会受风格影响);Midjourney 风格化强,艺术感在线,但会失真,指令遵从较差;快手可图 影视场景能用,风格化较差;Flux.1.1 真实感强,需要搭配 Lora 使用;文生图大模型 V2.1L(美感版) 影视感强,但会有点油腻,细节不够,容易糊脸;Luma 影视感强,但风格单一,糊;美图奇想 5.0 AI 油腻感重;腾讯混元 AI 油腻感重,影视感弱,空间结构不准;SD 3.5 Large 崩。 3. 指定 AI 生图里的文字,有 9 种解决方案,其中 2 种快过时了。包括 Midjourney(v6 版本开始支持文字效果,主要支持英文,中文支持有限)、Ideogram(以图片嵌入文字能力闻名,2.0 模型能力得到进一步加强,支持复杂文本和多种艺术风格,文字与图像能够自然融合,支持英文,中文提示词可自动翻译为英文)、Recraft(V3 开始支持文本渲染能力,是目前唯一能在图像中生成长文本的模型,支持精确的文本位置控制,支持图像编辑功能,支持矢量图生成,支持英文,中文渲染能力较弱)、Flux(FLUX.1 是一款高质量的开源图像生成模型,支持复杂指令,支持文本渲染,支持图像编辑,生成图像的质量很高,主要支持英文)。
2025-03-07
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
提示词
提示词是让 AI 听懂您的需求并生成想要画面的关键。 基础公式(新手必学):景别+运镜+主体+动作+风格。示例:特写镜头|镜头旋转|发光水晶球悬浮|星尘特效|赛博朋克风格。 进阶公式(提升质感):景别+运镜+主体(细节)+动作(速率)+场景(层次)+氛围+光影。示例:全景俯拍|无人机跟拍|雪山湖泊(镜面倒影)|慢动作|冷色调光线|自然纪录片风格。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。 提示词用于描绘您想生成的画面,支持中英文输入。不同模型对输入语言有不同要求,如通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词要做到: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 借助辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15
风格化mj提示词
以下是关于 Midjourney 风格化提示词的相关内容: 仿照 GPTs 里的 MJ prompt 改的提示词可用于 coze 或其他国内的 agent。MJ 对节点无要求,画插图可不切节点,不挑模型,提示词可让 agent 补全润色。例如:“一个巨大鲸鱼头部的特写,鲸鱼的眼睛显示疲惫的神情,一个小女孩站在鲸鱼的旁边抚摸鲸鱼的脸,小女孩占画面比例很小,体现鲸鱼的巨大,吉卜力工作室风格”的提示词为“A closeup of a huge whale's head with its tired eyes. A little girl in red dress stands beside the whale, gently touching its face. The girl takes up a small portion of the frame, emphasizing the whale's enormity. Created Using: soft colors, gentle lighting, wideangle lens, Ghibli Studio style ar 16:9 style raw niji 6”。 Midjourney V6 更新风格参考命令 2.0“sref”,常见问题如想要的新图像和 sref 图像差异大时,MJ 给出了三种办法: 修改提示:语义细节太多时,编写提示用可取细节替换不需要的;风格不够时,修改提示使其更符合追求的风格。 更改“sw”值:语义细节太多时,将“sw”从默认值 100 降低;风格不够时,将“sw”从默认值 100 提高。 使用小权重强调或弱化不需要的画布元素。 参数总览与举例: “No 否定提示”:在提示词末尾加上“no”可让画面中不出现某些内容,如“no plants”表示图像中不出现植物。 “Quality 生成质量”:在提示词后加上“quality”或“q”参数可更改生成图像花费时间和质量,高质量需更长处理时间和更多 GPU 分钟数。 “Seeds 种子值”:MJ 依靠噪点团起点“Seed”创建视觉噪音场生成初始图像,每个图像种子值随机生成,可指定,v4 模型中相同种子值和提示词产生相同图像结果,可用于生成连贯一致的人物形象或场景。 “Stylize 风格化”:使用 stylize 参数可让 Midjourney 生成更具艺术色彩、构图和形式的图像,低风格化值生成的图像与提示密切相关但艺术性较差,高风格化值产生的图像艺术性强但与提示关联性少,AI 自由发挥空间大。
2025-04-11
有没有那种可以模仿抖音百万博主爆款文案的写作风格以及写作模板的AI
以下是一些关于模仿抖音百万博主爆款文案写作风格和模板的 AI 相关内容: 1. 画小二:Coze 工作流提供了一系列针对抖音热门视频转小红书图文的配置,包括整体结构图、各模块参数配置(如开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块等)的详细说明。同时,在小红书标题和正文写作方面,具备多种技能,如采用二极管标题法创作吸引人的标题,产出口语化、简短且含适当 emoji 表情和 tag 标签的 200 字左右正文。 2. 夙愿:介绍了使用 GPT 模仿创作内容的万能思路,特别是在 Prompt 编写中的数据清洗部分。指出对标博主的文案模板化,数据清洗有人工和自动两种方法,推荐使用 GPT4 的数据分析器进行自动清洗。 3. AIIP 共学模版自媒体全域运营:包含对标笔记的详细信息,如标题、作者、详情、账号、主页、封面、视频、文案等。以“Deepseek+即梦,包装设计步骤来啦”为例,介绍了利用 Deepseek 和即梦进行设计的步骤,并表示希望对用户有帮助。
2025-04-11
文章风格提取
以下是关于文章风格提取的相关内容: 该提示词用于抽取不同风格文章的核心要素,抽取到的字段可作为 prompt,结合指定主题进行风格迁移。整体创作思路见文末 PDF。 具体使用方法为:拷贝文章风格提取提示词,输入给任意大模型,随后提供要抽取的文本。 已抽取的一些风格参考包括万维钢风格、史铁生《我与地坛》文风、李娟《我的阿勒泰》文风、许倬云《说中国》文风、鲁迅《狂人日记》文风、王小波《万寿寺》文风、飞书多维表格工作流自动化抽取等。 使用 DeepSeek V3 进行实验时,智能体地址为 https://www.coze.cn/s/VM9pUn9HdmA/ 。初级使用方法是输入公众号文章标题或内容,智能体会自动提取相关信息,默认风格是“炫彩”。高级使用方法需按照要求输入几个要素,如标题、副标题、分享封面、标签、风格等。
2025-04-11
你是否可以通过照片生成乐高风格人像
可以通过照片生成乐高风格人像。例如,可以使用相关的工具和技术,像在一些图像生成软件中,通过输入照片并设置相关的风格参数,如选择乐高风格,来实现生成。同时,在生成过程中可以像指挥设计师一样,与工具进行反复交流,对不满意的地方进行修改调整。广义上的像素艺术还包括立体像素艺术(类似乐高那种),相关的咒语关键词如“Pixel art”,生成思路可以是一家像素艺术风格的餐厅等。但需要注意的是,某些工具可能无法创建真正的纯净矢量图像的像素艺术,只是将图像“像素化”的像素艺术。
2025-04-11
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
吉卜力风格的生成是哪个ai
以下 AI 工具可以生成吉卜力风格的图像: Midjourney:仿照 GPTs 里的 MJ prompt 改了一版提示词,可以用在 coze 或者其他国内的 agent 里。不是很挑模型,基本上都可以用。方便的地方在于如果提示词懒得写全,可以让 agent 直接帮助补全润色,黏贴就可以。例如生成一个巨大鲸鱼头部的特写,鲸鱼的眼睛显示疲惫的神情,一个小女孩站在鲸鱼的旁边抚摸鲸鱼的脸,小女孩占画面比例很小,体现鲸鱼的巨大,吉卜力工作室风格的提示词为:A closeup of a huge whale's head with its tired eyes. A little girl in red dress stands beside the whale, gently touching its face. The girl takes up a small portion of the frame, emphasizing the whale's enormity. Created Using: soft colors, gentle lighting, wideangle lens, Ghibli Studio style ar 16:9 style raw niji 6(画面需要改成了 niji) Sora:生成过左半部分为超现实主义风格,细腻刻画皮肤纹理与光影变化,右半部分为吉卜力动画风格,柔和笔触呈现幻想世界魅力的震撼图像。
2025-04-08