Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用AI回答我的科学问题的提问

Answer

沃尔夫勒姆在探讨人工智能能否解决科学问题时提到了以下观点:

  1. 在多重计算过程中,存在许多可能的结果,目标是找到通向某些最终结果的路径。例如从 A 到 BABA 的最短路径,在简单例子中可显式生成整个多路图,但实际中多数情况图会太大,挑战在于不追踪整个可能性图的情况下弄清楚行动。常见方法是为不同状态或结果分配分数,追求分数最高的路径,在自动定理证明中,“从初始命题向下”和“从最终定理向上”工作也常见,还可建立“引理”,将 X→Y 添加为新规则。
  2. 人工智能可以提供帮助的一种方法是训练语言模型人工智能生成代表路径的标记序列,向其提供有效序列,呈现新序列的开头和结尾,要求其填充中间部分。
  3. 从历史上看,成功科学的一个决定性特征是能预测将会发生什么。在最简单的情况中,用人工智能做归纳推理,输入一系列测量结果,让其预测尚未完成的测量结果。将人工智能视为黑匣子,虽希望其不做假设只遵循数据,但不可避免会存在底层结构使其最终假设某种数据模型。
Content generated by AI large model, please carefully verify (powered by aily)

References

沃尔夫勒姆:人工智能能解决科学问题吗?

In what we’ve discussed so far,we’ve mostly been concerned with seeing whether AI can help us“jump ahead”and shortcut some computational process or another.But there are also lots of situations where what’s of interest is instead to shortcut what one can call a multicomputational process,in which there are many possible outcomes at each step,and the goal is for example to find a path to some final outcome.在我们到目前为止所讨论的内容中,我们主要关心的是人工智能是否可以帮助我们“跳跃式前进”并简化某些计算过程或其他过程。但也有很多情况下,我们感兴趣的是缩短所谓的多重计算过程,其中每一步都有许多可能的结果,例如,目标是找到通向某些最终结果的路径。As a simple example of a multicomputational process,let’s consider a multiway system operating on strings,where at each step we apply the rules{A→BBB,BB→A}in all possible ways:作为多计算过程的一个简单示例,让我们考虑一个对字符串进行操作的多路系统,其中每一步我们都应用规则{A→BBB,BB→A}方法:Given this setup we can ask a question like:what’s the shortest path from A to BABA?And in the case shown here it’s easy to compute the answer,say by explicitly running a pathfinding algorithm on the graph:有了这个设置,我们可以问这样的问题:从A到BABA的最短路径是什么?在此处所示的情况下,很容易计算答案,例如通过在图上显式运行寻路算法:{A,BBB,AB,BBBB,ABB,AA,ABBB,ABA,BBBBA,BABA}

沃尔夫勒姆:人工智能能解决科学问题吗?

在上面这个非常简单的例子中,我们很容易能够显式地生成整个多路图。但在大多数实际示例中,该图会太大。因此,挑战通常是在不追踪整个可能性图的情况下弄清楚要采取什么行动。一种常见的方法是尝试找到一种方法来为不同的可能状态或结果分配分数,并仅追求分数最高的路径。在自动定理证明中,“从初始命题向下”和“从最终定理向上”工作也很常见,试图找出路径在中间的交汇处。还有另一个重要的想法:如果建立了“引理”,即存在从X到Y的路径,则可以将X→Y添加为规则集合中的新规则。So how might AI help?As a first approach,we could consider taking something like our string multiway system above,and training what amounts to a language-model AI to generate sequences of tokens that represent paths(or what in a mathematical setting would be proofs).The idea is to feed the AI a collection of valid sequences,and then to present it with the beginning and end of a new sequence,and ask it to fill in the middle.那么人工智能可以提供什么帮助呢?作为第一种方法,我们可以考虑采用类似于上面的字符串多路系统的东西,并训练相当于语言模型人工智能的东西来生成代表路径的标记序列(或者在数学设置中将是证明)。这个想法是向人工智能提供一组有效的序列,然后向它呈现一个新序列的开头和结尾,并要求它填充中间部分。We’ll use a fairly basic transformer network:我们将使用一个相当基本的变压器网络:Then we train it by giving lots of sequences of tokens corresponding to valid paths(with E being the“end token”)然后我们通过提供大量与有效路径相对应的标记序列来训练它(E是“结束标记”)A,BABA:BBB,AB,BBBB,ABB,AA,ABBB,ABA,BBBBAE

沃尔夫勒姆:人工智能能解决科学问题吗?

Can AI Predict What Will Happen?It’s not the only role of science—and in the sections that follow we’ll explore others.But historically what’s often been viewed as a defining feature of successful science is:can it predict what will happen?So now we can ask:does AI give us a dramatically better way to do this?这并不是科学的唯一作用,在接下来的部分中我们将探索其他作用。但从历史上看,通常被视为成功科学的一个决定性特征是:它能预测将会发生什么吗?所以现在我们可以问:人工智能是否为我们提供了一种更好的方法来做到这一点?In the simplest case we basically want to use AI to do inductive inference.We feed in the results of a bunch of measurements,then ask the AI to predict the results of measurements we haven’t yet done.At this level,we’re treating the AI as a black box;it doesn’t matter what’s happening inside;all we care about is whether the AI gives us the right answer.We might think that somehow we can set up the AI up so that it“isn’t making any assumptions”—and is just“following the data”.But it’s inevitable that there’ll be some underlying structure in the AI,that makes it ultimately assume some kind of model for the data.在最简单的情况下,我们基本上想用人工智能来做归纳推理。我们输入一系列测量结果,然后要求人工智能预测我们尚未完成的测量结果。在这个层面上,我们将人工智能视为一个黑匣子;里面发生什么并不重要;我们关心的只是人工智能是否给出了正确的答案。我们可能会认为,我们可以通过某种方式设置人工智能,使其“不做出任何假设”,而只是“遵循数据”。但人工智能中不可避免地会存在一些底层结构,这使得它最终假设某种数据模型。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
如何更好地进行提问,使得AI回复的准确性更高?
以下是一些能让您更好地进行提问,从而提高 AI 回复准确性的方法: 1. 明确角色和任务:例如,指定 AI 为某一特定领域的专业人士,并明确其需要完成的具体任务。 2. 清晰阐述任务目标:让 AI 清楚了解您期望得到的结果。 3. 提供详细的上下文和背景信息:包括相关的案例、事实等,帮助 AI 理解问题的来龙去脉。 4. 提出具体且详细的需求和细节性信息:使用清晰、具体的语言,避免模糊不清的表述。 5. 明确限制和不需要的内容:避免 AI 给出不必要或不符合要求的回答。 6. 确定回答的语言风格和形式:如简洁明了、逻辑严谨等。 7. 讲清楚背景和目的:在提问时,梳理清楚背景信息和提问目的,使 AI 更好地理解问题上下文。 8. 学会拆解环节、切分流程:将复杂任务分解成更小、更具体的环节,以便 AI 更精确执行。 9. 了解 AI 的工作原理和限制:有助于更好地设计问题,使其能提供有用答案。 在信息检索和回答生成过程中: 1. 系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,并对信息的来源、时效性和相关性进行验证。 2. 消除多个文档或数据源中的冗余内容,防止在生成回答时出现重复或相互矛盾的信息。 3. 分析不同信息片段之间的逻辑和事实关系,构建结构化的知识框架,使信息在语义上更连贯。 4. 将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 5. 必要时进行语义融合,合并意义相近但表达不同的信息片段。 6. 最后,将整合好的上下文信息编码成适合生成器处理的格式,传递给大语言模型,由其生成准确和连贯的答案。
2025-04-04
我是一名日语大四学生,我要利用我的开题报告结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
要向 DeepSeek 提问以结合您的开题报告完成论文初稿,您可以遵循以下正确的提问模板: 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,例如您的开题报告的主题、研究目的、已有的研究进展等,以使 DeepSeek 更好地理解您的问题。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如您希望它根据开题报告提供论文大纲、分析相关数据、提供文献综述等,提出的需求越明确获得的答案越有价值。 4. 补充要求:您还可以提出关于回答的格式、风格、字数等方面的要求。 例如:您可以这样提问“我赋予您论文撰写助手的角色,我的开题报告主题是关于日本文化在现代社会中的变迁,目前我已经完成了初步的文献收集和分析,我的目标是请您根据这份开题报告为我生成一个详细的论文大纲,要求大纲结构清晰,逻辑连贯,具有一定的创新性”。
2025-03-31
我是一名日语大四学生,我要利用我的开题报告和文献综述结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
向 DeepSeek 提问时,可遵循以下万能通用的提问公式:提示词=赋予角色+背景/现状+目标/需求+补充要求。 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,以使它更好地理解您的问题,并为您提供更准确的答案。例如您是日语大四学生,正在进行开题报告和文献综述相关工作。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如完成一篇结合开题报告和文献综述的论文初稿。 4. 补充要求:例如指定写作风格要具有吸引力、友好性和幽默感等。 另外,在使用 DeepSeek 时还需注意: 对于像“仅通过东方集团的历年公开财务数据,分析这家公司的潜在投资机会和风险”这样的特定需求,可能需要进一步追问以获得更满意的结果。 与 DeepSeek 交流时,在其提供方法建议后,可以追问背后的方法论。 对于创作类的需求,如脱口秀段子,可以结合特定人物的特点和风格,并指定主题和字数等要求。
2025-03-31
不懂得提问ai,得出的答案总是不满意,又得费很多时间自己改
以下是一些关于如何向 AI 提问以获得满意答案的建议: 1. 避免追问 AI,因为这可能导致回答越来越离谱。可以使用 ChatGPT 的 temporary chat 功能,保证 AI 在没有任何记忆的情况下生成最新鲜的回答。 2. 当 AI 回答不理想时,可以告诉它退一步,重新审视整个结构,设想从零开始如何设计,以获得更简洁、直观的解决方案。 3. 如果 AI 自己猜测并修改问题,可让它依据日志判断问题所在。 4. 对于刚开始接触 AI 的用户,很多时候答案不符合预期并非 AI 能力问题,而是用户没有把问题和要求描述清楚。在提问时要把背景描述完整,把要求解释清楚,包括细节。 5. 推荐使用 5W1H 方法充分说明信息,即说清楚为什么(Why)、做什么(What)、啥时候(When)、涉及谁(Who)、在哪里(Where)、怎么做(How)。 6. 可以使用引号、分隔符号以及“首先、其次、最后”等连接词来组织 Prompt,赋予 AI 明确的角色,如专注于民商事法律领域的律师等。 7. 按照【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】的格式进行提问。 8. 讲清楚背景和目的,例如律师在处理交通事故案件时,清晰描述案件事实、法规等。 9. 学会提出好问题,使用清晰、具体的语言,避免模糊表述,了解 AI 的工作原理和限制,以提高回答准确性。 10. 在应用 AI 之前,对工作流程进行细致拆解,将复杂任务分解成更小、更具体的环节,以便 AI 更精确执行。
2025-03-26
我一个如何向ai提问
向 AI 提问可以采用以下方法: 1. 给 AI 设定一个角色:只需加上“你是一个XXXX角色”,这句话蕴含了角色应了解的背景和输出要求。因为不同角色背景不同,AI 明确角色后能更好地应对问题。 2. 举例子:很多时候,通过举实际例子能更有效地说明要求,使 AI 准确了解您的需求。 3. 连续提问:现在的 AI 能处理多轮对话,对于一个问题可连续提问,根据回复不断细化要求。 4. 当不知道如何提问时,可以直接问 AI 如何提问,然后用它产生的问题再问它。 在软件开发面试中,可观察候选人: 1. 如何向 AI 提问。 2. 如何判断 AI 代码的正确性。 3. 如何调整 AI 生成的代码。 市场营销面试中,让候选人用 AI 生成营销文案,并问“为什么用这个 Prompt”,观察其是否能调整提示词、判断 AI 生成内容的质量。 产品管理面试中,让候选人用 AI 解析用户反馈,提炼产品改进建议,考察其是否能验证 AI 结论的准确性,并提出优化方案。 面试时,可以问以下 AI 相关问题快速判断候选人是否真正懂 AI: 1. “你遇到过 AI 给出明显错误答案的情况吗?你是怎么处理的?” 2. “最近有没有新出的 AI 工具或功能是你学习并实际应用的?能举个例子吗?” 3. “如果 AI 生成的内容和你的预期不符,你会怎么优化它?” 4. “你觉得 AI 目前有哪些无法解决的业务难题?遇到这些问题你会怎么做?” 有效评估候选人的 AI 能力,需要综合考虑其在上述方面的表现。
2025-03-26
我是医科大学的本科学生,我现在想用Ai帮助我书写论文和报告,我应该怎么系统学习?
以下是一些系统学习利用 AI 帮助书写论文和报告的建议: 一、了解常用的 AI 工具和平台 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、学习使用 AI 辅助撰写论文和报告的方法 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。 三、注意事项 1. AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 保持科学的态度和方法,遵循科学伦理原则。 3. 了解现阶段 AI 在教育领域应用的局限性,如知识适配的层次性问题、教育应用的安全性考量等。 希望以上内容对您有所帮助。
2025-04-14
最新的生命科学有关的 AI动向
以下是生命科学领域有关 AI 的最新动向: 在医疗健康生物制药方面,AI 技术极大地加速了研究,在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。例如,AI 提前三年诊断胰腺癌;两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因;AI 帮助抗衰老,筛查出高效的药物候选物;利用 AI 寻找阿尔兹海默症的治疗方法;通过神经网络分析患者体液中的生物标志物,早期诊断帕金森。 Nature Methods 主题特刊聚焦于 AI 在生物学中的应用,探讨了计算生物学多领域,强调高精度蛋白质结构预测成就,提及了 AI 在蛋白质组学数据分析中的应用、机器学习可解释性挑战,以及科研人员对 AI 工具培训的需求,同时探讨了 AI 与生物医学数据结合的新时代。 Flagship Pioneering 创始人 Noubar Afeyan 提出 AI for Science 的下一步是 MultiAgent,旨在实现类似自动驾驶的科研自动化,推动生命科学领域的革命性进展。
2025-04-10
生成超过15000字的人工智能技术在智能化零售行业中的应用与商业模式创新论文,学科方向是计算机科学与技术专业
很抱歉,目前无法直接为您生成超过 15000 字的论文。但我可以为您提供一个论文大纲,以帮助您组织思路和开展研究: 标题:人工智能技术在智能化零售行业中的应用与商业模式创新 摘要:简述人工智能技术在智能化零售中的重要性、应用现状、创新商业模式以及研究的主要结论。 一、引言 (一)研究背景:介绍智能化零售行业的发展趋势和人工智能技术的兴起。 (二)研究目的与意义:阐述研究人工智能技术在该领域应用和商业模式创新的目的,以及对行业发展的重要意义。 (三)研究方法与结构:说明采用的研究方法,如文献综述、案例分析等,并概述论文的结构安排。 二、人工智能技术概述 (一)人工智能技术的定义与分类:解释人工智能的概念,分类如机器学习、深度学习、自然语言处理等。 (二)关键技术原理:详细介绍相关技术的原理,如机器学习中的监督学习、无监督学习等。 (三)技术发展历程与现状:回顾人工智能技术的发展历程,分析当前的技术水平和应用情况。 三、智能化零售行业概述 (一)智能化零售的概念与特点:定义智能化零售,阐述其特点如个性化服务、精准营销等。 (二)行业发展现状与趋势:分析智能化零售行业的现状,包括市场规模、竞争格局等,预测未来的发展趋势。 (三)面临的挑战与机遇:探讨行业发展中面临的问题,以及人工智能技术带来的机遇。 四、人工智能技术在智能化零售中的应用 (一)客户画像与精准营销:如何利用人工智能技术分析客户数据,实现精准营销。 (二)库存管理与供应链优化:通过人工智能算法优化库存水平和供应链流程。 (三)智能推荐与个性化服务:介绍基于人工智能的推荐系统,为客户提供个性化的购物体验。 (四)无人零售与智能支付:探讨无人零售店的技术实现和智能支付方式的应用。 (五)店铺布局与商品陈列优化:利用人工智能进行数据分析,优化店铺布局和商品陈列。 五、人工智能技术驱动的商业模式创新 (一)新的零售模式:如线上线下融合的智能零售模式。 (二)数据驱动的商业决策:依靠人工智能分析数据,制定更科学的商业决策。 (三)合作与共享经济模式:探讨与技术供应商、其他企业的合作模式,以及共享数据和资源的可能性。 (四)增值服务与收费模式创新:基于人工智能技术提供的新服务,创新收费模式。 六、案例分析 (一)选取成功应用人工智能技术的智能化零售企业案例。 (二)详细介绍其应用场景、商业模式创新和取得的成效。 (三)总结经验教训,为其他企业提供借鉴。 七、影响与挑战 (一)对消费者行为和市场竞争的影响:分析人工智能技术如何改变消费者购物行为和市场竞争格局。 (二)技术与数据安全问题:探讨人工智能应用中的技术漏洞和数据泄露风险。 (三)法律法规与伦理道德问题:研究相关法律法规的缺失,以及可能引发的伦理道德问题。 八、结论与展望 (一)研究成果总结:概括人工智能技术在智能化零售中的应用和商业模式创新的主要发现。 (二)未来研究方向与建议:提出进一步研究的方向和对企业、政府的建议。 希望以上大纲对您有所帮助,祝您顺利完成论文!
2025-04-07
有哪些专门针对科研人员的科学研究过程的AI工具
以下是一些专门针对科研人员科学研究过程的 AI 工具: 1. 对于需要修改医学课题的科研人员: Scite.ai:是为研究人员等打造的创新平台,提供引用声明搜索等工具,增强对科学文献的洞察。 Scholarcy:能从文档中提取结构化数据,生成文章概要,包含关键概念等板块内容。 ChatGPT:强大的自然语言处理模型,可提供有关医学课题的修改意见。 2. 在论文写作方面: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 3. 其他工具: Deformity.ai:创新的表单创建平台,通过人工智能技术,用户可快速制作生动的对话式表单,支持多种功能和多语言互动。 Afforai:为研究人员设计的 AI 驱动的研究助手和聊天机器人,提供多种工具简化研究流程,支持多种文档格式和不同搜索模式。 Recall:新型知识管理工具,自动总结各种在线内容并保存到知识库,自动组织分类,通过知识图谱发现信息联系,提供间隔重复学习功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。您可以根据自己的具体需求选择合适的工具进行尝试。
2025-03-20
科学计算大模型的代表模型有哪些
科学计算大模型的代表模型主要有以下几种: 1. Encoderonly 模型:适用于自然语言理解任务,如分类和情感分析,最知名的代表是 BERT。 2. Encoderdecoder 模型:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表模型如谷歌的 T5。 3. Decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此结构,包括 ChatGPT。 大模型具有以下特点: 1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。 2. 参数众多:如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在数字化处理中,为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。当神经元数量达到百亿、千亿级别时,会出现群体智能,即智能涌现,这在自然界如蚂蚁群体中有典型体现,人脑也由约 1000 亿个神经元构成复杂神经网络。
2025-03-20
AI产品经理应该具备哪些技能,需要学习哪些工具?计算机科学与技术专业的研究生如果想找AI产品经理的实习应该如何着手准备呢?如何准备项目呢?
AI 产品经理应具备的技能和需要学习的工具包括: 1. 学历背景:本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 工具熟悉:熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理;具有一定的编程基础,熟练使用 Python、Git 等工具。 3. 项目能力:负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法;了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 4. 思维能力:对数据驱动的决策有深入的理解,能够基于数据分析做出决策;具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案;对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注;具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 计算机科学与技术专业的研究生如果想找 AI 产品经理的实习,可以从以下方面着手准备: 1. 了解行业需求:搜索了解目前 AI 产品经理岗位的招聘技能要求情况。 2. 学习相关知识:深入学习上述提到的技能和工具知识。 3. 积累项目经验:可以参与一些相关的实践项目,例如收集数据、训练模型、派送模型等。 4. 思考商业价值:思考可以自动化的任务、驱动商业价值的核心以及商业领域的主要痛点。 5. 准备项目时,要明确项目目标,制定合理的开发时间表,清晰所需时间和人员。同时,为项目提供验收标准,尽量以数据衡量。 以上内容仅供参考,不同公司和项目可能有不同的具体要求。
2025-03-12
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
你是基于哪种ai模型的回答?
我是基于 Aily 和云雀大模型进行回答的。 Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。云雀是由字节跳动研发的语言模型,能通过便捷的自然语言交互,高效完成互动对话、信息获取、协助创作等任务。 您可以通过以下两种方式使用我: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,请在知识库首页获取最新二维码),然后点击加入,直接@机器人即可。 2. 在 WaytoAGI.com 的网站首页,直接输入您的问题,即可得到回答。
2025-04-11
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
具身智能是什么技术?用小学生能理解的话术回答
小朋友,具身智能呀,是人工智能里的一种很有趣的技术。 它说的是像机器人、虚拟代理这样的智能体,要通过和真实世界或者虚拟环境直接打交道来变得更聪明。 比如说,智能体要有能感觉周围环境的能力,能自己到处走,能拿东西、操作东西,还能学习新本领,适应新环境。 具身智能很在意智能体的“身体”,这个“身体”可以是机器人的样子,也可以是游戏里的虚拟角色。这些“身体”能帮智能体和环境互动,还会影响智能体学习。 像机器人可以通过它的手学会抓东西、摆弄东西,虚拟代理在游戏里能学会解决问题。 研究具身智能要用到好多知识,像机器人学、认知科学、神经科学还有计算机视觉。 在机器人领域,具身智能能让机器人更好地理解和适应我们人类的生活环境,跟我们交流更自然。在虚拟现实、增强现实和游戏里,也能让我们玩得更开心。 不过呢,具身智能还有一些难题要解决,比如怎么设计智能体的身体让它更聪明,怎么让它在复杂的环境里好好学习,还有怎么处理它和人类社会相关的一些问题。 简单说,具身智能就是给聪明的人工智能装上“身体”,让它能和周围环境更好地交流互动。
2025-04-05
作为小白如何在飞书搭建AI工具知识库机器人?分成前期、中期、后期流程回答
以下是小白在飞书搭建 AI 工具知识库机器人的流程,分为前期、中期和后期: 前期: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用不同的大模型,并了解如何白嫖大模型接口。 2. 确定机器人的功能范围,例如: 支持用户发送“关键字”,自助获取分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“自己的知识库”内容回答,不足时调用 AI 大模型,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能发布在微信公众号上,作为“微信客服助手”。 中期: 1. 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,若不想接入微信,到此搭建完成即可,它也有问答界面。 2. 准备以下内容: 根据机器人的目的和核心能力编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可以用 word、txt、excel 等方式。 创建自己的【知识库】用于回答 AI 相关知识。 创建【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号。 后期: 搭建,其中的 cow 插件能进行文件总结、MJ 绘画等。
2025-04-03
我想了解如何提取自己的声音并实现大模型以我的声音回答我
要提取自己的声音并实现大模型以您的声音回答,目前提供的知识库中没有直接相关的详细内容。但可以为您提供一些可能有用的思路和参考方向: 对于声音提取,可能需要使用专业的音频处理软件和设备,将您的声音录制并进行处理和分析。 关于让大模型以您的声音回答,这可能涉及到语音合成技术。您可以先了解一些常见的语音合成模型和工具,例如通过创建大模型问答应用,获取推理 API 服务等。 同时,还可以参考一些关于大模型和语音处理的专业知识,比如大模型的本质是基于语言的概率模型,通过设置合适的 Prompt 来引导模型输出更准确的结果。 由于知识库中没有确切的针对您需求的详细步骤和方法,以上内容仅供您初步参考。
2025-04-01