Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前的 rag 框架都有哪些

Answer

目前常用的 RAG 框架有 LangChain。

LangChain 是一个为简化大模型应用开发而设计的开源框架。它具有以下特点:

  1. 提供一套模块化的工具和库,便于开发者轻松集成和操作多种大模型。
  2. 设计注重简化开发流程,能让开发者将更多精力投入到创造应用的核心价值上。
  3. 支持广泛的模型,具备良好的可扩展性,以适应不断变化的业务需求。
  4. 作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续的更新。
  5. 提供了全面的文档和示例代码,有助于新用户快速掌握。
  6. 在设计时充分考虑了应用的安全性和用户数据的隐私保护。
  7. 是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。

LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/

Content generated by AI large model, please carefully verify (powered by aily)

References

RAG 提示工程(三):迈向工程化应用

到目前为止,我们一直利用Prompt Layer平台对提示词进行验证和迭代工作。然而,在实际的工作场景中,我们并不会局限于仅使用像Prompt Layer这样专门针对提示词优化的平台。相反,我们会采用更广泛的工具和框架进行大模型项目的开发。在实际项目中,我们会使用工程化框架,为开发提供必要的支持。随着我们向工程化的第一步迈进,我们将逐步转变思路,不再仅仅局限于提示词角度的建设和优化,而是更加从实际项目角度入手去考虑工程化建设。这意味着我们将转变我们要采用更全面的工具和方法,以确保能够满足实际业务需求,提供真正的价值。下面,我们就介绍几种常用的RAG框架,供大家参考。[heading4]3.1 LangChain[content]LangChain是一个为简化大模型应用开发而设计的开源框架。它通过提供一套模块化的工具和库,允许开发者轻松地集成和操作多种大模型,从而将更多的精力投入到创造应用的核心价值上。LangChain的设计注重简化开发流程,支持广泛的模型,并且具备良好的可扩展性,以适应不断变化的业务需求。作为一个得到社区广泛支持的开源项目,LangChain拥有活跃的贡献者和持续的更新,同时提供了全面的文档和示例代码帮助新用户快速掌握。此外,LangChain在设计时也充分考虑了应用的安全性和用户数据的隐私保护,是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。LangChain官方手册:https://python.langchain.com/docs/get_started/introduction/

RAG提示工程系列(3)| 迈向工程化应用

到目前为止,我们一直利用Prompt Layer平台对提示词进行验证和迭代工作。然而,在实际的工作场景中,我们并不会局限于仅使用像Prompt Layer这样专门针对提示词优化的平台。相反,我们会采用更广泛的工具和框架进行大模型项目的开发。在实际项目中,我们会使用工程化框架,为开发提供必要的支持。随着我们向工程化的第一步迈进,我们将逐步转变思路,不再仅仅局限于提示词角度的建设和优化,而是更加从实际项目角度入手去考虑工程化建设。这意味着我们将转变我们要采用更全面的工具和方法,以确保能够满足实际业务需求,提供真正的价值。下面,我们就介绍几种常用的RAG框架,供大家参考。[heading4]3.1 LangChain[content]LangChain是一个为简化大模型应用开发而设计的开源框架。它通过提供一套模块化的工具和库,允许开发者轻松地集成和操作多种大模型,从而将更多的精力投入到创造应用的核心价值上。LangChain的设计注重简化开发流程,支持广泛的模型,并且具备良好的可扩展性,以适应不断变化的业务需求。作为一个得到社区广泛支持的开源项目,LangChain拥有活跃的贡献者和持续的更新,同时提供了全面的文档和示例代码帮助新用户快速掌握。此外,LangChain在设计时也充分考虑了应用的安全性和用户数据的隐私保护,是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。LangChain官方手册:https://python.langchain.com/docs/get_started/introduction/

RAG提示工程系列(3)| 迈向工程化应用

到目前为止,我们一直利用Prompt Layer平台对提示词进行验证和迭代工作。然而,在实际的工作场景中,我们并不会局限于仅使用像Prompt Layer这样专门针对提示词优化的平台。相反,我们会采用更广泛的工具和框架进行大模型项目的开发。在实际项目中,我们会使用工程化框架,为开发提供必要的支持。随着我们向工程化的第一步迈进,我们将逐步转变思路,不再仅仅局限于提示词角度的建设和优化,而是更加从实际项目角度入手去考虑工程化建设。这意味着我们将转变我们要采用更全面的工具和方法,以确保能够满足实际业务需求,提供真正的价值。下面,我们就介绍几种常用的RAG框架,供大家参考。[heading4]3.1 LangChain[content]LangChain是一个为简化大模型应用开发而设计的开源框架。它通过提供一套模块化的工具和库,允许开发者轻松地集成和操作多种大模型,从而将更多的精力投入到创造应用的核心价值上。LangChain的设计注重简化开发流程,支持广泛的模型,并且具备良好的可扩展性,以适应不断变化的业务需求。作为一个得到社区广泛支持的开源项目,LangChain拥有活跃的贡献者和持续的更新,同时提供了全面的文档和示例代码帮助新用户快速掌握。此外,LangChain在设计时也充分考虑了应用的安全性和用户数据的隐私保护,是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。LangChain官方手册:https://python.langchain.com/docs/get_started/introduction/

Others are asking
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来完成,如 Meta AI 引入的 RAG 方法。RAG 把信息检索组件和文本生成模型结合,可微调,内部知识修改高效,无需重新训练整个模型。它会接受输入并检索相关支撑文档,给出来源,与原始提示词组合后送给文本生成器得到输出,能适应事实变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识易过时且不好更新、输出难以解释和验证、易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库存储和更新稳定且无学习风险、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本。 在 RAG 系统开发中存在 12 个主要难题,并已有相应的解决策略。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
飞书智能伙伴创建平台 RAG实现
飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,能提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升,为企业探索大语言模型应用新篇章、迎接智能化未来提供理想选择。 在飞书智能伙伴创建平台上实现 RAG 相关应用有多种方式: 1. 利用飞书的知识库智能问答技术,引入 RAG 技术,通过机器人帮助用户快速检索内容。 2. 可以使用飞书的智能伙伴功能搭建 FAQ 机器人,了解智能助理的原理和使用方法。 3. 本地部署资讯问答机器人,如通过 Langchain + Ollama + RSSHub 实现 RAG,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。例如使用 feedparse 解析 RSS 订阅源,ollama 跑大模型(使用前需确保服务开启并下载好模型),使用文本向量模型 bgem3(如从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效向量存储)。 使用飞书智能伙伴创建平台的方式: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,需在找到最新二维码),点击加入,直接@机器人。 2. 在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 创建问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,存在局限性。 3. 需要用更先进的 RAG 技术解决问题。 4. 在群中提供快速检索信息的方式,使用更便捷。 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区情况,讨论了相关技术和应用场景,并介绍了企业级 agent 方面的实践。
2025-04-08
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景如知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-03
prompt 框架
以下是关于 prompt 框架的相关内容: 格式: 常见的格式包括 Markdown(兼容性强,适用于写公众号文章、百家号文章等)、无序列表、有序列表、表格(更清晰直观,适用于对比数据等)、图片(具有随机性,可搭配生成 PPT)、二维码(将链接以二维码图片展示)、Latex 公式(面对数学问题时使用,能渲染出美观的公式,但目前官网对于行内公式的渲染不稳定)、代码(适合程序员指定需要撰写的代码,也方便复制内容)、JSON 格式(ChatGPT 可以以结构化数据形式输出信息,方便应用程序处理和解析,常用于程序员开发应用程序调用 API 时)。 关键框架: ICIO 框架:包括指令(执行的具体任务)、背景信息(提供执行任务的背景和上下文)、输入信息(大模型需要用到的信息)、输出信息(明确输出的具体要求,如字数、风格、格式)。 BROKE 框架:通过 GPT 的设计提示提升整体反馈效率,包括提供足够背景信息、角色设定、目标明确、结果定义、调整。 CRISPIE 框架:包括能力和角色(期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文)、声明(简洁明了的说明希望完成的任务)、个性(回应的风格、个性或者方式)、实验(提供多个回答的示例)。 律师使用 Prompt 的建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):例如,你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):提供背景信息和上下文,如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):直接明确期望 AI 完成的任务,如要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):明确希望 AI 以什么风格或方式回答。 Experiment(举例)。 零样本思维链(Zero Shot Chain of Thought,ZeroshotCoT):研究了 CoT prompting 的后续发展,引入了一种简单的零样本提示方法。在问题结尾添加相关提示词,能让大语言模型生成回答问题的思维链,并从中提取出更准确的答案。
2025-04-10
分析程序员在AI能力上的不同维度,比如AI框架,AIPrompt等
以下是对程序员在 AI 能力上不同维度的分析,包括 AI 框架和 AI Prompt 等方面: AI 框架: PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,是一个集中化平台,便于在 AI 项目中管理提示,实现协作和工作流程优化。具有本地部署和云原生、简易设置、数据库支持、SDK 支持、提示跟踪与分析、协作工具等特点。开发指向: ChainForge:开源的可视化编程环境,专门用于测试大型语言模型(LLMs)的提示。允许用户进行快速而有效的提示想法测试和变化,具有多模型测试、响应质量比较、评估指标设置、多对话管理等特点。开发指向: AI Prompt: Promptknit:为 AI Prompts 测试提供服务的平台,可能提供工具和资源来帮助用户设计、测试和优化 AI 模型的提示。网站: 对于律师等法律人写好 Prompt 的建议: 明确 Prompt 是给人工智能(AI)系统提供的信息或问题,用来引导其产生特定回答或执行特定任务。 建议框架及格式:CRISPE 包括 Capacity and Role(能力与角色)、Insight(洞察)、Statement(陈述)、Personality(个性)、Experiment(举例)。例如,在处理合同纠纷案件时,为 AI 赋予角色和能力,提供背景信息和上下文,明确期望其完成的任务,设定回答风格等。
2025-04-09
提示词框架
以下是关于提示词框架的相关内容: 一、Vidu Prompt 基本构成 1. 提示词基础架构 主体/场景 场景描述 环境描述 艺术风格/媒介 调整句式和语序,避免主体物过多/复杂、主体物分散的句式描述。 避免模糊的术语表达,尽可能准确。 使用更加流畅准确的口语化措辞,避免过度文学化的叙述。 丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。 2. 提示词与画面联想程度的说明 为了帮助更好地理解,使用单帧图像作为例子介绍提示词与画面联想的关系。 基础词:玻璃桌上的咖啡杯,杯子外面写着单词 LOVE。 适度联想扩充:花园里(具体的位置描述)的透明(材质描述)玻璃桌上的咖啡杯,杯子外面写着单词 LOVE,周围满是盛开的鲜花(具体的位置描述/环境描述),和煦的阳光洒满整个花园(环境描述),Claude Monet(艺术家风格),印象派风格(艺术流派风格)。 联想关键点: 具体详实的位置描述/环境描述:笼统来讲就是在进行构图,可以帮助构建画面的基本呈现效果。 艺术风格描述:进一步提升效果和氛围,统一画面风格。 二、小七姐:Prompt 喂饭级系列教程小白学习指南(二) 如果拿到由四个词语组成的提示词框架无从下手,可以这样做: 恭喜你,写出了第一个提示词,它是: 请告诉我如何用下列四个词编写一个框架性的提示词(prompt)? 情境: 任务: 行动: 结果: 请回忆写出这条提示词的过程。 最后复习本节课的三步走: 1. 懂原理 2. 找需求 3. 用框架 下课啦~ 我是 prompt 学习者和实践者小七姐,欢迎链接我交流 prompt 相关知识:se7en319
2025-04-01
形成指令让AI根据我的论文框架写论文
以下是为您提供的让 AI 根据论文框架写论文的相关指导: 1. 提供详细的背景信息:如您的个人经历、研究主题等,类似于“我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年……”这样具体且全面的描述。 2. 结构化组织内容:使用编号、子标题和列表来使论文条理清晰,例如规定概述内容解读结语的结构,或者分标题阐述不同部分。 3. 明确文章结构:包括开门见山且能引起目标群体悬念的标题,说清楚要解决的问题及背景、可能导致的损失的第一部分,以案例引入的第二部分,对案例进一步分析的第三部分,以及给出具体操作建议的第四部分。 4. 丰富细化内容:先让 AI 写故事概要和角色背景介绍并做修改,然后一段一段进行细节描写,可采用让 AI 以表格形式输出细节描述的技巧,确保内容具体且前后一致。 5. 注意语言风格:可以自己定义,也可以根据文章生成对应语言风格关键词让 AI 遵循。 6. 遵循相关要求:比如某些比赛对作品的字数、修改限制等。 需要注意的是,虽然可以利用 AI 辅助写作,但并非提倡这是道德的使用方式。同时,如果是接收方,最好为组织准备好迎接各种 AI 生成的内容。
2025-03-30
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
完全免費的AI工具目前有哪些
目前完全免费的 AI 工具包括: 1. 麻省理工学院(MIT)为 8 18 岁孩子推出的 AI 课程 Day of AI,包含在 MIT 的 RAISE 项目中。不过该课程资源主要面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。 2. 元子提到的一些能让普通人最低成本直接上手试的 AI 工具,包括聊天工具、绘画工具、视频工具、音乐工具等,但未具体指明具体的工具名称。
2025-04-13
gemini-2.5目前是什么水平
Gemini 2.5 是一款全能思考模型,具有以下特点和优势: 多领域达到 SOTA 水平,逻辑、代码、任务处理能力大幅提升。 支持 100 万 tokens 上下文,具备强大的阅读能力。 统一架构原生多模态支持,图文音码协同处理,并非外挂而是原生融合。 您可以通过以下链接获取更多详细信息:https://www.xiaohu.ai/c/xiaohuai/googlegemini25proexperimental
2025-04-13
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13