Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

视觉理解技术最新动态和趋势

Answer

以下是视觉理解技术的最新动态和趋势:

一、视觉分析技术

  1. Transformer 视觉模型优点
  2. Transformer 视觉模型的局限

二、图像-语言模型

三、视频-语言模型

四、LLM 多模态 Agent

五、应用场景

  1. 多模态内容理解与处理
  2. 智能交互与自动化
  3. 具身智能
  4. 未来发展趋势(2024 - ?)
  5. 视频生成模型 mapping

六、未来发展方向

  1. 技术路径而言:利用预训练 LLMs 进行指令调整
    • 最初,多模态融合方法常采用预训练的目标检测器,如 ViLBERT、VisualBERT 和 Unicoder-VL,通过提取图像特征和执行交叉模态预训练任务,为后续的图像 - 文本任务奠定基础。
    • 随着 ViT 的出现和普及,更多方法开始利用 ViT 作为图像编码器,强调大规模预训练,以提高模型的性能和泛化能力,例如 Flamingo。
    • 近期,向多模态 LLMs 发展,从进行预训练到向指令调整(instruction tuning)转变,如 LLaVA 和 MiniGPT-4,融合视觉和语言信息,能更有效地完成视觉理解相关任务,提升模型对于指令的理解能力和零样本性能,更好地泛化到未见过的任务和领域。
  2. 应用场景而言:赋予机器理解多模态的能力

此外,李飞飞在 2015 年的 TED 演讲《我们怎么教计算机理解图片?》中提到了计算机视觉方面的研究进展,指出虽然在科技上取得了很多进步,但在计算机视觉方面仍存在一些问题,如自动驾驶车辆的视觉敏锐度、向盲人传递画面、无人机的视觉技术等。

Content generated by AI large model, please carefully verify (powered by aily)

References

质朴发言:视觉-语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期

原文链接:https://mp.weixin.qq.com/s/dYLqW8dNOcQw59UtQwXNgA来源:质朴发言发文时间:2024.01.22近期,生成式AI领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于Transformer架构的视觉-语言模型,这些模型优化了从视觉输入到语言输出的转换过程。报告的范围专注于视觉和语言之间的交互,而不考虑单纯的视觉到视觉的计算机视觉任务。综上,本报告旨在为所有关心大模型事业的伙伴,提供一个全面而深入的视角,以理解视觉-语言理解模型的发展历程、现状及未来趋势。?目录建议结合要点进行针对性阅读。?一、视觉分析技术1、Transformer视觉模型优点2、Transformer视觉模型的局限二、图像-语言模型三、视频-语言模型四、LLM多模态Agent五、应用场景1、多模态内容理解与处理2、智能交互与自动化3、具身智能4、未来发展趋势(2024-?)5、视频生成模型mapping六、未来发展方向1、技术路径而言:利用预训练LLMs进行指令调整2、应用场景而言:赋予机器理解多模态的能力七、References八、附录

质朴发言:视觉-语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期

最初,多模态融合方法常采用预训练的目标检测器,例如ViLBERT、VisualBERT和Unicoder-VL。这些方法通过提取图像特征和执行交叉模态预训练任务,为后续的图像-文本任务奠定了基础。随着ViT的出现和普及,更多方法开始利用ViT作为图像编码器。这些方法强调大规模预训练,以提高模型的性能和泛化能力,例如Flamingo。近期,我们见证了向多模态LLMs的发展趋势,从进行预训练到向指令调整(instruction tuning)转变。例如LLaVA和MiniGPT-4,它们通过融合视觉和语言信息,能够更有效地完成视觉理解相关的任务。这进一步提升模型对于指令的理解能力,提升零样本性能,使模型能够更好地泛化到未见过的任务和领域,对于实现具有高度智能的通用人工智能,是一个重要的进步。

李飞飞的两次 TED 演讲

链接:https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures?language=zh-CN我先来给你们看点东西。(视频)女孩:好吧,这是只猫,坐在床上。一个男孩摸着一头大象。那些人正准备登机。那是架大飞机。李飞飞:这是一个三岁的小孩在讲述她从一系列照片里看到的东西。对这个世界,她也许还有很多要学的东西,但在一个重要的任务上,她已经是专家了:去理解她所看到的东西。我们的社会已经在科技上取得了前所未有的进步。我们把人送上月球,我们制造出可以与我们对话的手机,或者订制一个音乐电台,播放的全是我们喜欢的音乐。然而,哪怕是我们最先进的机器和电脑也会在这个问题上犯难。所以今天我在这里,向大家做个进度汇报:关于我们在计算机视觉方面最新的研究进展。这是计算机科学领域最前沿的、具有革命性潜力的科技。是的,我们现在已经有了具备自动驾驶功能的原型车,但是如果没有敏锐的视觉,它们就不能真正区分出地上摆着的是一个压扁的纸袋,可以被轻易压过,还是一块相同体积的石头,应该避开。我们已经造出了超高清的相机,但我们仍然无法把这些画面传递给盲人。我们的无人机可以飞越广阔的土地,却没有足够的视觉技术

Others are asking
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
哪些AI可以支持对镜头的视觉理解
以下 AI 可以支持对镜头的视觉理解: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. OpenAI 的 GPT4:在 12 月发布的更新中正式上架了“视频理解”功能,可以和用户就便签内容进行讨论。 3. 基于豆包视觉理解模型实现的具有视频通话功能的应用:能够对摄像头传输的实时画面进行分析,精准理解画面中的关键信息,包括图表论文人物表情、动作细节、场景环境等。同时支持高清流畅的视频通话,实现和大模型面对面的即时交流体验。
2025-04-09
如何用AI 驱动的产品营销创新,从内容创作到视觉呈现的全方位变革?
以下是关于如何用 AI 驱动产品营销创新,从内容创作到视觉呈现的全方位变革的一些方法和案例: 一、内容创作方面 1. 利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,以获取关键信息,为营销内容创作提供方向。 2. 借助 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 二、视觉呈现方面 1. 通过 AI 生成图像或素材,再结合平面合成及修正,确保符合品牌形象,精准表达营销活动主题,如淘宝天猫大促视觉的案例。 2. 对于需要定制化真人模特实景素材的主题活动,利用 AI 将策划、搭建、拍摄、设计融为一个闭环流程,完成页面所有素材的生产和输出,例如七夕主题活动页面。 3. 在 UI 设计场景中,采用 AI 能力快速定制多种用户需要的视觉效果,如通过 SD 中 controlnet 的有效控制生成指定范围内的 ICON、界面皮肤等内容。 三、在阿里巴巴营销中的应用 1. 关键词优化:利用 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 2. 产品页面设计:借助 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 3. 图像识别和优化:使用 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 4. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 5. 客户反馈分析:通过 AI 分析客户评价和反馈,优化产品和服务。 6. 个性化推荐:利用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 7. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 8. 营销活动分析:借助 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 9. 库存管理:依靠 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 10. 支付和交易优化:利用 AI 分析不同的支付方式对交易成功率的影响,优化支付流程。 11. 社交媒体营销:通过 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 12. 直播和视频营销:使用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 四、大型视觉模型 Sora 的机遇 1. 对于学术界,OpenAI 推出 Sora 标志着战略转变,鼓励更广泛的 AI 社区深入探索文本到视频模型,利用扩散和变换器技术。以原生大小训练 Sora 的创新方法为学术界提供了灵感,强调使用未修改数据集的好处,开辟了创建更高级生成模型的新路径。 2. 对于行业,Sora 目前的能力预示着视频模拟技术进步的道路,突出了在物理和数字领域内增强现实感的潜力。公司可以利用 Sora 生产适应市场变化的广告视频,并创建定制化的营销内容,降低成本,增强吸引力和效果,彻底改变品牌与受众互动的方式。
2025-03-24
多模态Agent最新动态
以下是关于多模态 Agent 的最新动态: 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 近期,生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。 从 2022 年 11 月 18 日到 2023 年 7 月 26 日,多模态 Agents 迅速增长。 LLM 多模态 agent 是将现有技术融合的新尝试,是一种集成了多种模态数据处理能力的 AI 技术。 优点:高度的灵活性和扩展性,可根据不同任务需求调用最合适的模型处理任务,适应多样化任务和数据类型,优化资源使用,提升效率;无需训练,系统开发周期快,成本低。 局限性:调试和工程化难度较高,维护和升级成本高;多个组件紧密耦合,单点故障可能导致整个系统风险增加;没有涌现出新的能力。 适用场景:需要综合处理视频、语音和文本等多种信息的复杂环境,如自动驾驶汽车;高度交互和灵活的用户界面,如客户服务机器人或交互式娱乐应用。 《2024 年度 AI 十大趋势报告》 随着大模型对图像和视频信息的处理能力快速提升,预计 2025 年将开始出现更为综合性的多模态交互,AI 能够通过物联网、特定信息等多种感知通道进行协同。 多模态输入和输出使 AI 交互性更强、交互频次更高,适用场景也更加丰富,AI 产品整体水平显著提升。 Agent 作为融合感知、分析、决策和执行能力的智能体,能够根据用户历史行为和偏好,主动提供建议、提醒并个性化执行能力,为用户提供高度个性化的任务。从 2025 年开始,AI Agent 即将广泛投入使用。 从个性化推荐到直接生成个性化内容,AIGC 能够使用户体验的个性化程度有明显提升,这将帮助产品进一步完善用户体验,并通过提高用户忠诚度和迁移成本,实现差异化定价和进一步的服务增值,对产品的差异化竞争有重大意义。目前,基于 AIGC 的高度个性化已经在 AI 教育、AI 陪伴、AI 营销领域有明显进展。在硬件端搭载的多款 AI 智能助手也已开始以高度个性的个人助理作为宣传重点。
2025-03-31
现在是2025年3月18日,我现在要整理一份AI行业的最新动态,在每天早上十点发布,请你整理今天的最新动态,10条左右
以下是 2025 年 3 月 18 日 AI 行业的最新动态: 1. 3 月 AI 发展持续升温。 2. 3 月潞晨科技发布 OpenSora。 3. 3 月 Suno 发布 V3 版本爆火。 4. OpenAI CPO Kevin Weil 访谈亮点:GPT5 近在眼前,将融合多个模型能力,快速推进,AI 代码自动化将在今年内达到 99%,强化推理能力和大规模预训练是关键方向,AI 不仅会写代码,还将让人人都能成为软件创造者。 5. 2025 年职场思考与建议:高管们面临“经验贬值”与“转型焦虑”,非 AI 公司的估值与融资变难,软件开发方式正被重构,“等风来”的代价越来越高,加入 AI 公司也并非万能,市场冷却下招聘更挑剔。 6. 你的孩子可能已经在用 AI“作弊”。 7. 过去一年,头部 AI 应用的品类变化不显著,创意工具仍占据最大比重。 8. 2024 年 9 月,OpenAI 发布新一代语言模型 o1,采用全新训练与推理方案,结合强化学习技术,显著增强推理能力,可能通过生成内部“思维链”模拟人类系统 2 思维方式。 9. 5 月伊莉雅离开 OpenAI,AI 竞争白热化。 10. 5 月伊利亚成立新公司,估值超五亿美金。
2025-03-18
最新的AI技术动态
以下是关于最新的 AI 技术动态的相关内容: AI 技术的学习路径: 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 2024 年 AI 大事纪: 3 月:AI 发展持续升温,潞晨科技发布 OpenSora,Suno 发布 V3 版本爆火。 4 月:英伟达发布硬件股价飙升。 5 月:苹果发布 AI 芯片,张吕敏发布 IC light,AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金。 7 月:快手开源 LivePortrait 模型,表情迁移。 8 月:StabilityAI 老板成立新公司发布 flux 大模型。 9 月:阿里云发布模型,海螺 AI 参战,Google 发布 GameGen 实时生成游戏,通义千问 2.5 系列全家桶开源,华为发布 cloud matrix 云计算基础设施,GPT 高级语音模式上线,Meta 发布 AI 眼镜 Orion,AI 代码编辑器 cursor 爆火。 10 月:Pika 发布 1.5 模型,诺奖颁发给 AI 奠基人,特斯拉发布机器人,Adobe 发布 Illustrator+Al 生成矢量图,智谱 AI 发布 autoGLM,腾讯混元开源 3D 模型。 AI 技术的发展历程和前沿技术点: 发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-16
今天有什么ai新动态
以下是近期的 AI 新动态: 2024 年 3 月:AI 发展持续升温,潞晨科技发布 OpenSora,Suno 发布 V3 版本爆火。 2024 年 4 月:英伟达发布硬件,股价飙升。 2024 年 5 月:苹果发布 AI 芯片,张吕敏发布 IC light,AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金。 2024 年 7 月:快手开源 LivePortrait 模型,实现表情迁移。 2024 年 8 月:StabilityAI 老板成立新公司发布 flux 大模型。 2024 年 9 月:阿里云发布模型,海螺 AI 参战,Google 发布 GameGen 实时生成游戏,通义千问 2.5 系列全家桶开源,华为发布 cloud matrix 云计算基础设施,GPT 高级语音模式上线,Meta 发布 AI 眼镜 Orion,AI 代码编辑器 cursor 爆火。 2024 年 10 月:Pika 发布 1.5 模型,诺奖颁发给 AI 奠基人,特斯拉发布机器人,Adobe 发布 Illustrator+Al 生成矢量图,智谱 AI 发布 autoGLM,腾讯混元开源 3D 模型。 12 月 5 日的 AI 新动态: Clone Robotics:仿生机器人公司致力于生产高仿真产品,技术和外观的进步让人类与机器人的边界变得越来越模糊。 Humane 发布 AI 驱动操作系统 CosmOS,具有多种核心功能,支持多种输入方式,并可实时从互联网获取数据为用户提供服务。 DeepMind 发布天气预测 AI 模型 GenCast,可预测未来 15 天的天气和极端天气风险,与顶级预测系统相比表现更优,且模型代码、权重和预测数据已开源。 OpenAI 的 ChatGPT 用户突破 3 亿。 在法律法规方面: 虽然 AI 概念不新,但近期数据生成和处理的进步改变了该领域及其产生的技术。例如,生成式 AI 模型的能力发展带来机会的同时也引发了关于潜在风险的新辩论。 并非所有 AI 风险都源于不良行为者的故意行为,有些可能是意外后果或缺乏适当控制导致的。 对 AI 特定风险及其潜在危害进行了初步评估,并参考了其威胁的价值,包括安全、公平、隐私、人权、社会福祉和繁荣等。 交叉的 AI 风险评估确定了一系列高级风险,框架将寻求通过适当干预来优先处理和减轻这些风险。例如,安全风险包括对人类和财产的身体损害以及对心理健康的损害。
2025-03-12
如何把图片生成动态立体图
目前在将图片生成动态立体图方面,相关技术和方法还在不断发展和探索中。常见的途径可能包括使用专业的图形设计软件,如 3D 建模工具,通过对图片进行深度分析和建模来实现动态立体效果。但具体的操作过程会因软件的不同而有所差异。另外,一些新兴的 AI 图像生成技术也可能在未来为这一需求提供更便捷的解决方案。
2025-03-05
最新的AI行业动态和进展有哪些,包含2025年
以下是关于最新的 AI 行业动态和进展(包含 2025 年)的内容: 2024 年: 图片超短视频的精细操控:包括表情、细致动作、视频文字匹配。 有一定操控能力的生成式短视频:风格化、动漫风最先成熟,真人稍晚。 AI 音频能力长足进展:带感情的 AI 配音基本成熟。 “全真 AI 颜值网红”出现,可以稳定输出视频,可以直播带货。 游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。 AI 男/女朋友聊天基本成熟:记忆上有明显突破,可以较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。 实时生成的内容开始在社交媒体内容、广告中出现。 AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。 AI 的商业模式开始有明确用例:数据合成、工程平台、模型安全等。 可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功。 中国 AI 达到或超过 GPT4 水平;美国出现 GPT5;世界上开始现“主权 AI”。 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代要稍晚)。 AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧。 AI 立法、伦理讨论仍然大规模落后于技术进展。 2025 2027 年: AI 3D 技术、物理规则成熟:正常人无法区别 AI 生成还是实景拍摄。 全真 AI 虚拟人成熟:包含感情的 AI NPC 成熟,开放世界游戏成熟;游戏中几乎无法区别真人和 NPC。 AR/VR 技术大规模商用。 接近 AGI 的技术出现。 人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源。 具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破。 “人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉。 AI 引发的社会问题开始加重,结构性失业开始出现。 AGI 对于地缘政治的影响开始显露。 此外,还有以下相关动态: 算力瓶颈不只是单纯的技术和建设问题,而是影响整个行业竞争格局的重要变量。 逐渐进入多模态灵活转换的新时代,实现文本、图像、音频、视频及其他更多模态之间的互相理解和相互转换。 人类劳动形式逐步“软件化”,复杂劳动被抽象为可调用的软件服务,劳动流程被大幅标准化和模块化,劳动能力像“即插即用”的工具一样易于获取。 AI 行业目前仍处于严重亏损的阶段,商业化进程仍有巨大提升空间。 云厂商是产业链中毋庸置疑的“链主”。 2024 年,头部 AI 应用的品类变化并不显著。创意工具(如图像和视频内容创作)依然占据最大比重。To P(面向专业用户)应用展现出强大的市场潜力,ToB(面向企业)应用发展路径相对复杂,ToC 应用面临较大的挑战。 在 AI 应用领域,Copilot 和 AI Agent 是两种主要的技术实现方式。 北美和欧洲贡献了 AI 移动应用市场三分之二的份额,众多中国 AI 公司积极出海。 2024 年 10 月的大事记包括: Gartner 发布 2025 年十大战略技术趋势。 DeepSeek 开源多模态 LLM 框架 Janus。 司南开源大模型能力评估模型 CompassJudger。 Anthropic 发布新功能 computer use,发布 Claude 3.5 Haiku,更新 Claude 3.5 Sonnet。 Stability AI 发布 Stable Diffusion 3.5。 x.AI 正式推出 API。 ComfyUI V1 官方桌面版开放内测。 华为发布纯血操作系统鸿蒙 OS NEXT。 Jina AI 推出高性能分类器 Classifier API。 OpenAI 发布图像生成模型 sCM。 Midjourney 上线外部图片编辑器。 Runway 发布动画视频功能 ActOne。 Ideogram 推出 AI 画板工具 Canvas。 Genmo 开源视频生成模型 Mochi 1。 荣耀发布操作系统 MagicOS 9.0。 美国 14 岁少年与 C.AI 聊天后离世。 新华社发文表示警惕「AI 污染」乱象。 港中文&趣丸推出 TTS 模型 MaskGCT。 科大讯飞发布讯飞星火 4.0 Turbo。 阿里通义代码模式开始内测。 Anthropic Claude 新增数据分析功能。 北京市大中小学推广 AI 学伴和 AI 导学应用。 稚晖君开源「灵犀 X1」全套资料。 OpenAI 高管 Miles Brundage 离职。
2025-02-17
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
最新的AI排行榜
以下是最新的 AI 排行榜相关信息: 3 月 9 日榜单: 文生图:Ideogram 2a(官方评价这是 Ideogram 迄今为止最快、最实惠的文生图模型) 文生视频:SkyReels、海螺01director、Pixverse4.0 图生视频:SkyReels、Pixverse4.0、Adobe Firefly 测评涵盖了 Midjourney,Flux,即梦,Recraft,ideogram,SD3.5,Sora,可灵,通义,即梦,海螺,pixverse,pika,vidu,luma 等 50+国内外热门模型,还有 Veo 2.0 等最新模型上线。本周最出乎意料的是最新上的模型 SkyReels,在文生视频和图生视频榜单都排名靠前。 生成式 AI 季度数据报告 2024 月 1 3 月: 赛道方面:天花板潜力为数亿美金;对标公司有 Xmind 等;总体趋势平稳增长,15.93%;月平均增速 34 万 PV/月;原生产品占比中等。 竞争方面:Top1 占比 32%;Top3 占比 82%;马太效应弱;网络效应中;大厂是否入局是,但大厂占比较低;技术门槛中。 23 年 12 月至 24 年 3 月月访问量排行榜及变化情况: 非大厂的 Top1 公司及产品:Whimsical Al,估值融资 3000 万$(2021),最新月 PV 为 237 万。2023 年 4 月,月访问量 382 万,Whimsical AI、gitmind AI 分别位列第一、第二的位置,月访问量合计占比 84%。2024 年 3 月,月访问量 812 万,Whimsical AI 整年看处于增长态势,仍位列第一,月访问量达到 237 万;ProcessOn 凭借其原有客户积累,月访问量快速增长,位列第二名,占比 25%。 记忆辅助榜单中,2023 年 4 月,月访问量为 83 万,Rewind AI 以 43 万的访问量位居第一,占赛道月总访问量的 52%。Personal.ai 和 Heyday 分别以 25 万和 8 万的访问量位列二、三,分别占赛道月总访问量的 30%和 10%。2024 年 3 月,月访问量增长至 245 万,rabbit inc.以 128 万的访问量跃居第一,占赛道月总访问量的 52%。Humane 和 Rewind AI 分别以 46 万和 22 万的访问量位列二、三,分别占赛道月总访问量的 19%和 9%。 相关网址: https://www.xiaohongshu.com/user/profile/65890e73000000003d035101?xsec_token=AB67OV1KW_ANCcrYRU_oRTJKJ9xLtexbMgyoJq68rxQA%3D&xsec_source=pc_search aiwatch.ai
2025-04-15
有哪些最新的ai技术可用在课堂教学上
以下是一些可应用在课堂教学上的最新 AI 技术: 1. 智慧技术助理:为教师提供辅助,帮助教师在课前、课中、课后呈现新的教学样态,驱动学生高效和差异化学习。 2. 生成式人工智能:可用于为教师减负,例如辅助设计教学内容、生成提示词等。 3. 个性化学习支持:通过 AI 技术实现对学生的个性化学习支持,如智能评估学生的学习情况,为每个学生提供定制化的学习方案。 4. 教育过程和结果的结构化表征:利用 AI 进行分析,帮助教师更好地了解学生的学习过程和结果。 5. 多维度数据采集与评价:AI 可以整合行为、情感、认知等多维度数据,为学生绘制发展全景图,实现更全面的教育评价。 需要注意的是,AI 在教育中是“助手”而非“替代”,教师应充分利用这些成熟的技术促进教育变革。
2025-04-13
ai在教学中的最新应用
以下是 AI 在教学中的一些最新应用: 1. MIT 为孩子开设免费的 AI 课程,涵盖了 AI 在跨学科领域的应用,如 AI 与气候、AI 与大学录取、AI 对美国大选的影响等。孩子们需要思考如何用气候数据写好故事、预测气候变换走向,从数据分析角度了解大学录取中的相关问题,以及识别 AI 深度伪造的新媒体材料等。 2. 张翼然提出用 AI 为教师减负,为有初步 AI 使用经验、渴望了解最新技术进展并交流的老师提供了相关技巧和分享。例如,在智慧技术助理加持下探索教学新样态,分享全球 AI 技术在教育界的新发展和应用案例。 3. 从 AI 助教到智慧学伴的应用探索中,提出调整教学理念,将 AI 作为教学辅助工具和合作伙伴。学习利用 AI 工具的优势应用于教学,如自动生成练习、个性化反馈等,同时确认输出质量。根据 AI 能力设计开放性作业,调整考核方式,继续发挥教师在提供情感支持、培养团队合作等方面的优势。
2025-04-11
最新的生命科学有关的 AI动向
以下是生命科学领域有关 AI 的最新动向: 在医疗健康生物制药方面,AI 技术极大地加速了研究,在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。例如,AI 提前三年诊断胰腺癌;两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因;AI 帮助抗衰老,筛查出高效的药物候选物;利用 AI 寻找阿尔兹海默症的治疗方法;通过神经网络分析患者体液中的生物标志物,早期诊断帕金森。 Nature Methods 主题特刊聚焦于 AI 在生物学中的应用,探讨了计算生物学多领域,强调高精度蛋白质结构预测成就,提及了 AI 在蛋白质组学数据分析中的应用、机器学习可解释性挑战,以及科研人员对 AI 工具培训的需求,同时探讨了 AI 与生物医学数据结合的新时代。 Flagship Pioneering 创始人 Noubar Afeyan 提出 AI for Science 的下一步是 MultiAgent,旨在实现类似自动驾驶的科研自动化,推动生命科学领域的革命性进展。
2025-04-10
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10
我想了解最新的ai的即时信息(最新资讯与ai工具)
以下是为您提供的最新 AI 即时信息和工具: 4 月 1 日 AI 资讯: 【AI 模型及应用】 OpenAI:将会开源一个推理模型,ChatGPT 即将推出推理强度控制选项,Gpt4o 生图能力面向免费用户。 Gemini 2.5 Pro:免费使用,任何人都可以使用 Canvas 进行编码和创作。 【AI 视频】 Higgsfield:发布 50 多个电影级摄影机动作预设,提升动态镜头表现力。 luma:为 Ray 2 引入摄像机运动概念,可基于预设镜头并组合编辑。 Remakes:支持基于用户上传图像直接编辑,并融合 Remade 视频特效,简化创意流程。 Meta:宣布推出 MoCha 系统,实现电影级说话角色合成效果。 【AI 3D】 HSMR:推出从单张图像重建人体 3D 骨骼和网格模型的系统。 krea:引入 AI 3D 生成能力,扩展其创意工具的功能范围。 PGC:推出基于物理的单一姿势高斯布料模拟技术,提升数字服装的真实感。 【AI 音频】 MiniMax Audio:发布全新 Speech02 语音模型,提升语音合成质量。 3 月 19 日 AI 资讯: 【AI 模型】 英伟达:发布全球首个开源人形机器人基础模型 Isaac GR00T N1 及相关 GTC 信息。 谷歌 Gemini:放出了两个功能 Canvas 和 Audio Overview。 【AI 视频】 STAbility AI:发布 Stable Virtual Camera,2D 图像转化 3D 视频。 Domo AI:推出“图片说话”功能,带口型匹配。 【AI 3D】 Roblox:推出 AI 3D 技术 Cube 3D。 Claude MCP Unity 版本推出。 【AI 音乐】 AI 音乐工具 Udio:推出 v1.5 Allegro。 LVAS Agent:基于多智能体协作的长视频音频合成。 获取 AI 资讯的渠道: 公众号:超时空视角、AI 替代人类。 小红书/抖音:EverAI。 B 站:Ever AI 酱(这里会有教程及 AI 工具界面操作)。 关于“通往 AGI 之路”知识库和社区平台: WaytoAGI(通往 AGI 之路)是一个致力于人工智能(AI)学习的中文知识库和社区平台。为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。 汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 社区定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了 AI 春晚、离谱村等大型共创项目。 在没有任何推广的情况下,WaytoAGI 一年时间已有超过 100 万用户和超千万次的访问量。 目前合作过的公司/产品包括阿里云,通义千问,淘宝,智谱,支付宝,豆包,火山引擎,marscode,coze,堆友,即梦,可灵,MiniMax 海螺 AI,阶跃星辰,百度,Kimi,吐司,liblib,华硕,美团,美的,360,伊利,魔搭,央视频,Civitai,Openart,Tripo3D,青椒云等。
2025-04-10