Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI与教师能力培养

Answer

以下是关于 AI 与教师能力培养的相关内容:

人工智能的发展为教育带来了诸多变化。一方面,鉴于其依赖的神经网络基础,专家 AI 可能通过元学习更快地获取知识,并有望成为下一代专家(包括人类和 AI)的教师。另一方面,随着 AI 技术的飞速发展,教育体系面临巨大挑战。

教育体系存在惯性和制度性滞后,课程更新、教师培训和资源重新配置需要时间,大规模改革的提案需经历复杂决策流程。现有的教育体系追求稳定性和标准化,缺乏灵活性和快速响应能力,与 AI 引领的教育创新需求脱节。教育政策更新滞后,政策制定者对新兴技术理解不足,政策调整受多种因素影响,且在教师培训和招聘上存在不足,多数教师未接受相关培训。

此外,MQ 老师作为知乎的 AI 讲师,拥有丰富的教育行业经验,在过去半年多一直在探索教育场景中的 AI 实践,包括撰写多篇小文和培训众多老师、家长和同学。

Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

大聪明:未来教育的裂缝:如果教育跟不上AI

随着人工智能技术的飞速发展,教育体系面临前所未有的挑战。首先,教育体系的惯性本质上是一种“制度性滞后”。教育制度是建立在历史、文化和社会结构之上的复杂体系。诸如课程设置、教师资格认证、学术评价体制等均有着深厚的传统根基。在此基础上,课程的更新和教师的培训都需要时间,教育资源重新配置也不可能一蹴而就。同时,大规模改革的提案需要通过缜密的决策流程,涉及多方利益博弈,这本身便是一个长期的议程。其次,现有的教育体系往往被设计为追求稳定性和标准化,而非灵活性和快速响应。AI引领下的教育创新,需要的是快速试错和持续迭代的能力。但传统教育体系更倾向于保持现状,抵制变动,这种本质上的保守性造成了与技术发展的脱节。教育政策的更新往往较为滞后。政策制定者对新兴技术的理解可能不足,导致他们在政策设计上无法充分预见到技术对教育的长远影响。政策往往是在技术变革发生数年甚至数十年后才开始调整,错失了最佳应对时机。同时,政策更新还受到预算限制、法规约束和政治周期的影响,这些都使得政策调整过程缓慢。技术与政策之间的脱节也体现在教师的培训和招聘上。尽管AI和教育技术的进步为学习提供了个性化和高效的途径,但多数教师并没有接受过相关的培训。他们不仅需要掌握这些工具的操作,更需了解如何将技术与教学目标相结合。当前教师培训和专业发展项目在数量和质量上与这些需求存在巨大差距。此外,现有评估和认证机制可能阻碍教育体系的快速变革。学校和教师往往受到现有评估体系的约束,这些体系更侧重于传统的学习方法和结果。因此,创新的教育实践往往难以得到认可,反而有可能因为偏离既定评价标准而遭到质疑。

MQ:AI + 教育 | 实践与探索

大家好,我是MQ老师,知乎的AI讲师,考过了国家工信部,微软,讯飞三个初级人工智能工程师证书。我在教育行业工作15年+,教过2岁到20岁的娃,也做过校级管理层。过去半年多,我一直在探索教育场景中的AI实践:零散写了200+小文,培训了来自30+高等院校,K12国际学校和创新学校等上千位老师,家长和同学。今天这篇来详细复盘我的心路历程并分享实践。半年前画的AI+教师赋能全景图

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
教师AI应用培训
以下是关于教师 AI 应用培训的相关内容: 一、培训经历 有人积极参与了由 XX 大学教育技术中心组织的为期一个月的“AI 教育应用”在线培训项目。培训内容主要包括: 1. 人工智能基础理论:涵盖机器学习、深度学习等基本概念和技术原理。 2. AI 教育应用场景分析:通过案例研究,探讨 AI 技术如何支持个性化学习、智能评估等教育实践。 3. 教学设计与实施:学习如何利用 AI 工具设计创新的教学活动,并有效应用于课堂教学中。 在培训中,个人在专业知识、技能方面有所提升,对教学理念、方法有了新的认识或改变,并且在实际工作中开始应用学到的知识和技术。同时,也会遇到一些困难和挑战,并通过相应的方法克服。 二、相关资料和资源 1. 深圳市福田区 AI 先锋队的相关信息。 2. 教师 AI 应用手册。 3. 清华大学 104 页《Deepseek 从入门到精通》的更新内容。 4. 热门 AI deepseek 推荐及案例征稿通知的更新。 5. 爱好者交流 g 群和微信群的更新。 6. 案例 24、25、26 的更新。 三、课程示例 1. AI 辅助下的“科技伦理”主题研讨课: 课程目标:思维激发,利用 AI 生成开放性问题,引发对技术发展伦理问题的深度思考;多维分析,通过 AI 提供的多维数据,全面分析技术发展的潜在风险和社会影响;批判思考,培养学生的批判性思维能力,建立负责任的科技使用态度。 课程实施流程:AI 生成开放性问题,如自动驾驶事故责任归属、社交媒体算法影响、AI 就业影响等;多维数据分析,整合新闻报道、学术论文、社会调查、法律法规等多源数据;课堂辩论,基于数据支持的小组辩论与交流;反思总结,梳理 AI 技术机遇与挑战,形成负责任使用态度。 案例亮点:问题导向,AI 生成的开放性问题激发深度思考,避免表面化讨论确保讨论主题的时效性和挑战性;数据支持,多维数据分析支持全面客观的判断,避免片面和主观的决策倾向;能力培养,通过辩论提升批判性思维和表达能力,促进深层次的思想碰撞和交流。 四、适合对象和活动 1. 适合对象:初次接触 AI,期待掌握 AI 基本对话方式,借助相关工具提高效率的教师。 2. 活动: 12 月 9 日星期六 10:00 12:00,“人人都是 AI 高手——藏在手机 APP 里的 AI”,挖掘每天使用的淘宝、B 站等 APP 里藏着的人工智能,想象让教育和 AI 融合的另一种可能性。 “AI 基础工作坊——用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解 AI 的优势短板,学习如何写好提示词去获得更高质量的内容;同时基于一线教师工作场景,分享优秀提示词与 AI 工具,帮您解决日常工作、育人以及教学中的常见问题,提高工作效率,刷新你的工作流。
2025-04-01
作为一名高中语文教师,该学习哪些知识,能够更好地在工作中运用AI
作为一名高中语文教师,为了在工作中更好地运用 AI,您可以学习以下知识: 1. 提示词设计:掌握有效的提示词设计公式,例如 RTFC,以便更精准地向 AI 提出需求。 2. 利用 AI 工具:如用 Metaso 建立案例库,随时询问随时学习。 3. 了解 AI 在教学中的应用技巧:包括用 AI 配字幕、翻译、思维导图等快速总结和学习讲座内容。 4. 掌握 AI 赋能教学设计:以高中语文课程标准为导向,结合学生主体和核心素养,设计教学流程。例如在《再别康桥》的教学设计中,通过创设情境、品鉴特色、融思迁移等环节,融入地理、美术、音乐等多学科知识,借助人工智能协助修改诗歌创作。 5. 学习智能作文批改指导:利用相关工具提升作文批改的效率和质量。 6. 参加相关工作坊:如 AI 进阶工作坊,了解最新 AI 技术与实践案例分享,掌握全球 AI 技术在教育界的新发展和新应用。 同时,建议您参加适合有初步 AI 使用经验、期待了解最新技术进展、渴望分享交流的老师的课程和活动,不断提升自己在 AI 应用方面的能力。
2025-03-24
我是一名中职思政教师,我想开一个主题为AI赋能梦想的班会,班会内容要创新并且与计算机专业高一学生、技能强国相结合。想帮我想一个班会框架,内容具有在教室的可操作性,低成本的
以下是为您设计的一个以“AI 赋能梦想”为主题,适合中职计算机专业高一学生,在教室可操作且低成本的班会框架: 一、引入主题 1. 播放一段关于 AI 改变世界的短视频,引发学生兴趣。 2. 老师简单介绍本次班会的主题“AI 赋能梦想”以及与技能强国的联系。 二、知识讲解 1. 用 PPT 展示 AI 的基本概念和应用领域,如医疗、交通、教育等。 2. 结合计算机专业,讲解 AI 在该领域的发展前景和就业机会。 三、小组讨论 1. 分组讨论 AI 对未来职业的影响,以及如何通过学习计算机技能在 AI 时代立足。 2. 每组选派代表发言,分享讨论结果。 四、案例展示 1. 展示一些中职学生在 AI 相关领域取得成功的案例。 2. 分析他们成功的原因和所具备的技能。 五、创意设想 1. 让学生们设想自己如何利用 AI 技术实现个人梦想,写在纸条上。 2. 随机抽取学生分享他们的设想。 六、总结与展望 1. 老师总结本次班会的重点内容。 2. 鼓励学生努力学习,为技能强国贡献自己的力量,实现 AI 赋能的梦想。 希望这个班会框架能满足您的需求,祝您班会举办成功!
2025-03-13
教师如何用ai提升教学效率
以下是教师利用 AI 提升教学效率的一些方式: 1. 利用多文体智能作文批改评分工具,如 BigModel 智谱 AI 大模型开放平台。大模型能凭借其数据处理能力和应用潜力,为教师提供精确的学生需求洞察,帮助教师量身打造学习方案,提高教学效果和工作效率。 2. 借助 Character.ai 平台,让历史人物作为数字教师为学生授课,实现一对一辅导,提高学生参与感,生动地传授知识,还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 3. 使用阅读备课小助手,如在 flowgpt 上传的相关工具,极大缩短教学准备时间。例如,以前准备教研素材和制作 PPT 可能需要一天到一天半,现在可缩短至 1 2 小时。它能根据输入的阅读文章,按要求生成教学目标、词汇列表、段落分析、阅读理解题目和泛读文章等,还能实现一键课程目标设计、制作词汇练习、生成段落结构、生成泛读练习、生成口语输出活动和回答模板等功能。
2025-03-03
中学教师如何学习AI,以方便教育教学
中学教师学习 AI 以方便教育教学可以从以下几个方面入手: 1. 获取信息和自学:可以利用人工智能来解释概念,例如通过相关提示获得类似自动导师的帮助,如的直接链接来激活 ChatGPT 中的导师。但要注意因人工智能可能产生幻觉,关键数据需根据其他来源仔细检查。 2. 课堂应用: 输入书上例题,让 AI 生成新颖解法,引发学生思考。 进行交互式学习,随时要求解释关键代码并举例,为学生提供支架。 利用人工智能分担低阶认知,让人有精力投入高阶认知加工,但要注意对思维训练的引导,提高对学生表现的要求,关注和引导“偷懒”学生。 3. 个性化学习计划:借助 AI 大规模部署个性化学习计划,为每个学生提供“口袋里的老师”,理解其独特需求,回答问题或测试技能。例如像 Speak、Quazel、Lingostar 等已经在做这样的事情。 4. 学科学习辅助:利用相关应用帮助学生学习特定科目,如 Photomath、Mathly 指导数学问题,PeopleAI、Historical Figures 模拟与杰出人物聊天教授历史。 5. 作业辅助:使用工具如 Grammarly、Orchard、Lex 帮助学生克服写作难题,提升写作水平。处理其他形式内容的产品如 Tome、Beautiful.ai 可协助创建演示文稿。 您还可以了解更多关于。
2025-02-25
张翼然: 用AI为教师减负 (3H) .pdf
以下是关于“用 AI 为教师减负”的相关内容: 与大语言模型交流的心得:把大模型当作大学生可以,当作专家不行;“实习生”只能执行任务,需要指明方向、拆解任务、教其一步步操作,像导演一样编排具体流程、检查结果、修改流程、反复迭代。提示语的核心是逻辑,要将复杂任务拆分成科学合理的步骤,且让前一步结果成为后一步基础。写 Prompt 效果不理想时,思考任务拆分是否合理。即使指明步骤,未打印出来也无效果,因 LLM 需基于前面输出结果预测后面结果。 教师使用 AI 小技巧:很多 AI 网站可创建“智能体”,如配置信息、知识库、能力配置等,可手搓各种机器人为工作,如出试题、找资料、画插图、专业翻译等。设置“常用语”“小助手”“bot”,如 Kimi.ai 。 人机智慧学习协作框架: 个性化学习计划:分析学生表现,创建定制学习路径。 课程开发/学习沉浸:生成图像、文本和视频,转化为补充教育材料等。 社会互动/沟通:与新的 AI 工具结合,为学生提供更好准备工具。 AI 备课测试:与优秀人类教师相比仍有差距,人机融合是大势所趋。 教学目标示例:如学生能理解背诵课文、把握文章大意等。 智能体相关:预先写好咒语(prompts),像编程一样写详细操作步骤,以后直接使用,可将日常工作列出,寻找可被 AI 加速和固定输入输出的工作,写成“智能体”并迭代优化。 提示词工程:提示词技能是指用户设计提供给生成式人工智能大模型的文字或文本的技能,其内容决定生成内容质量,是教师用好人工智能的基本教学技能。提示词设计公式包括指定角色、明确任务、概述要求、提供说明。
2025-02-23
企业如何培养全员AI思维,将AI融入企业文化,驱动人才转型,推动AI驱动的创新。
企业培养全员 AI 思维、将 AI 融入企业文化、驱动人才转型并推动 AI 驱动的创新,可参考以下方面: 1. 组织管理转型:参考波士顿咨询公司发布的《》报告,AI 技术将推动组织从金字塔结构向松树型转变,需要人才具备创新、持续学习、透明和协作能力,组织文化应强调人的价值和认知多样性。为加速 AI 转型,建议采取自上而下的战略推动和自下而上的创新激活,培养关键人才,并重塑员工技能。 2. 构建 AI 监督与反馈机制: 建立异常监测机制,针对 AI 决策结果进行定期回顾,设立异常情况触发预警机制,避免因 AI 错误而导致决策失误。 在关键业务决策中设置人类干预节点,在 AI 给出初步建议后由人类进行审核和判断,特别是财务预测、市场扩展策略等核心业务决策应有清晰的人工复核流程。 企业可以引入“人机协作审查委员会”,由高层管理人员、业务线负责人和技术团队组成,每月审查 AI 关键决策的结果,设定触发条件(如连续三次异常预测)来判断是否需要人工干预。 3. 保留人类的创新与主导地位: 虽然 AI 能通过数据提供创新支持,但真正的突破性创新依然需要人类的参与,企业应明确 AI 是助力而非替代。在中国市场,创新是企业保持竞争优势的关键,过度依赖 AI 可能会削弱员工的创新力和主动性。 设立创新实验室,让 AI 提供背景数据和支持,员工在此基础上进行创意开发,AI 可以生成基础创意,员工进行拓展和跨领域应用。 进行跨部门协作,创建多样化团队,整合市场、技术和创意团队的力量,让 AI 提供洞察和辅助,具体决策由团队中的人类成员作出。 企业可以设立“AI 创新月”,每月让不同部门提出与 AI 相关的创新方案,要求员工结合 AI 的分析提出创意,而非直接采用 AI 方案,以培养团队的创新能力,避免 AI 的全权主导。
2025-03-12
我希望你向我推荐一个AI培养我画画的兴趣爱好。我目前23岁,无任何画画基础,目前用IPA中的procrate APP绘画比较方便,我喜欢颜色鲜艳的简笔画,但是我对procrate APP并不熟悉,希望有一个AI能充当我的花花启蒙老师,带领我使用procrate APP学习简笔画
很抱歉,以上提供的内容中没有直接针对您需求的有效推荐。不过,您可以考虑以下途径: 1. 【野菩萨的 AIGC 资深课】:由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画等多个体系的知识。 2. 您还可以在网络上搜索关于 Procreate APP 以及简笔画的教学视频和教程,有很多免费或付费的资源可供选择。 希望这些建议对您有所帮助。
2025-02-10
AI智能体对个人工作能力培养方面的启示
AI 智能体对个人工作能力培养有以下启示: 1. 工作方法方面: 彻底让自己变成一个“懒人”。 能动嘴的不要动手,用嘴说出想做的事远比打字快。 能动手的尽量用 AI,用 AI 远比苦哈哈手敲快。 把手上的工作单元切割开,建设属于自己的智能体。 根据结果反馈不断调整自己的智能体。 定期审视自己的工作流程,看哪个部分可以更多地用上 AI。 2. 个人素质方面: 技术层面之外,个人能力的提升是核心,尤其是学习能力和创造能力。 学习能力是通过持续阅读和实践来吸收、消化和积累知识的能力,是构建个人知识体系的基础和个人成长的动力源泉。 为保持竞争力,要培养并维持旺盛的好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识,全方位、多角度学习和实践,以积累知识、提高适应能力和创新思维。 3. 技术应用方面: 迅速掌握生成式人工智能的基本概念和潜在影响,重点理解其如何革新工作方式和重塑行业格局。 深入了解市场上现有的人工智能产品和工具,并积极应用到实际工作中。 学习提示词技术,编写清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体,让其革新工作方式,多个虚拟伙伴和助手协同工作,提高工作效率和创新能力。 需要注意的是,AI 技术的出现能把大部分人的能力提升到及格线以上,人与人之间最大的差距在于认知差距。对创建 AI 智能体感兴趣的小伙伴,可前往 WaytoAGI 开源免费社区了解(里面有保姆级教程)。
2025-01-22
AI与师范生实践能力培养
以下是关于 AI 与师范生实践能力培养的相关内容: 对于中学生学习 AI 的建议: 1. 从编程语言入手,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,以及面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括基本概念、发展历程、主要技术(如机器学习、深度学习等),以及在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,如参加学校或社区组织的编程竞赛、创意设计大赛等,尝试用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考其对未来社会的影响。 在智慧课程培育建设方面的案例: 1. 24 小时 AI 学伴:学生随时利用 AI 学伴巩固课堂知识,强化对复杂影像的理解。 2. 跨学科知识图谱:AI 整合解剖学、放射物理等资源,提升跨学科学习效果。 3. 个性化学习支持:AI 根据学生进度提供定制化练习和反馈,强化薄弱环节。 4. 病例库与临床决策模拟:AI 通过病例库和虚拟实践,提高学生临床决策能力。 5. 解放教师生产力:AI 减轻教师重复性工作,让其专注教学设计与创新。 此外,拜登签署的 AI 行政命令中提到,为确保 AI 促进公平和公民权利,采取了一系列行动,包括为房东、联邦福利项目和联邦承包商提供明确指导,防止 AI 算法加剧歧视;通过培训、技术援助和部门协调解决算法歧视问题;在刑事司法系统中制定使用 AI 的最佳实践以确保公平等。同时,为保护消费者、患者和学生,总统也指示了相关行动。
2025-01-14
AI在师范生实践能力培养的路径
以下是关于 AI 在师范生实践能力培养的路径的相关内容: 对于师范生实践能力的培养,可参考以下路径: 1. 基础学习 了解 AI 基本概念:熟悉 AI 的术语、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 掌握编程语言:如 Python、JavaScript 等,这些是 AI 和机器学习的基础。学习编程语法、数据结构、算法等基础知识。 2. 学习资源与平台 在线教育平台:通过 Coursera、edX、Udacity 等平台上的课程,按照自己的节奏学习。 特定课程:特别推荐李宏毅老师的课程。 3. 深入学习与选择方向 依据兴趣选择特定模块,如自然语言处理、计算机视觉、推荐系统等。 掌握提示词技巧,上手容易且实用。 4. 实践与应用 参与实践项目:参加学校或社区组织的相关竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 5. 关注前沿动态 关注权威媒体和学者,了解 AI 技术的最新进展和发展方向。 6. 结合教育领域 学习 AI 在教育领域的应用案例,思考如何将 AI 技术应用于教学实践中。 总之,师范生可以从多个方面入手,全面系统地学习 AI 知识和技能,并将其与教育实践相结合,提升自身的实践能力。
2025-01-14
学习AI,我应该从哪里开始,培养自己的兴趣
学习 AI 并培养兴趣可以从以下几个方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,吵爷建议: 1. 带着好奇心去尝试: 记住“生成”两个字,了解“生成式人工智能”Generative AI。 随便找一个国产 AI 随便聊点什么,比如小学奥数题、写一篇演讲稿、怎么看待 996 等,看看 AI 擅长和不擅长的地方,有没有能帮到您的地方,哪些地方做得不够好。不用一开始带着太强的目的性,把它当作天猫精灵来玩。聊一段时间后,留下 1 2 个更顺手的应用增加使用深度。 条件允许的话,可以直接使用 ChatGPT 或者 Claude,处理复杂任务时会更省力。 YoYo 的学习心得: 1. 学习前状态: 不理解 AI 和提示词工程,不懂代码,英语差,注册尝试各种 AI 工具走了不少弯路。 对 ChatGPT 的认识仅限于日常问答、SQL 学习交互,能支持工作数据提取。 2. 学习后现状: 可以搓多 Agent 的智能体,但需要进修 python 搓更多智能体。 营销文案 demo,SQL 代码进阶学习应用。 创建了 3 个图像流智能体,2 个 Agent 智能体玩具。 在公司中实践智能客服从创建到应用的过程,实现企业微信机器人问答的基本功能。 学习 Dr.kown 的尝试实践、图像流的尝试、企业智能体实践,智能客服。 总之,学习 AI 要找到适合自己的路径,学以致用,通过学习 分享 不断填补知识的缝隙来成长。
2025-01-02
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
runway属于什么ai能力类型
Runway 是一家总部位于旧金山的 AI 创业公司推出的产品。 在 AI 能力类型方面: 年初爆火,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能够通过文字、图片等方式生成 4 秒左右的视频。 内测能力可根据参考图像进行 Video to Video 视频风格化。 致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。 11 月 25 日发布新图像生成模型 Frames,专注打造特定美学和视觉氛围,支持细粒度控制“外观、感觉和氛围”,强调“世界构建”,可设计完整的视觉世界,包括场景、氛围、情感等,提供全面的视觉叙事支持。 目前 Runway 支持在网页、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105 秒视频),iOS 则有 200 多,两端额度貌似并不同步。官方网站:https://runwayml.com/
2025-04-15
runway的能力类型,核心功能
Runway 的能力类型和核心功能包括以下方面: 在 Gen2 模型上推出了较多细节控制能力,并且支持精细数值调节,是当下 AI 视频生成产品中可控性最强的产品。 多笔刷控制局部运动:支持最多 5 个笔刷控制,包括物体运动方向、运动曲线调节。调高 Ambient,笔刷绘制区域物体的运动将和周边环境产生更多关联,并加大运动幅度。 相机控制:支持水平/垂直平移,水平/垂直翻转,镜头缩放/旋转。 Lip Sync Video:支持文本转 TTS 音频、音频文件换音,还有上半年大火的 Lip sync video 对口型能力。 不论是工具栏中不断丰富的音频、视频处理能力,还是 Runway Watch 栏目中的优秀合作案例,都能看出 Runway 一直坚定得在影视制作方向发展。未来若能打通 AI 生成和视频剪辑能力,Runway 未来将对影视制作起到至关重要的作用,成为视频领域必不可少的重要工具。
2025-04-15
你都有什么能力呢?
我作为 AI 知识专家,具备以下能力: 1. 作为提示词专家,能将常规的提示词转化为结构化的提示词,并输出符合预期的回复。了解 LLM 的技术原理和局限性,具有丰富的自然语言处理经验,具备迭代优化能力。 2. 能为您介绍小白参与活动的流程和组队所需的人员类型,如脚本编写、出图、出视频、配音乐、剪辑、统筹等。 3. 为您讲解扣子提供的基础功能,包括提示词(设定 Bot 身份及回复逻辑)、插件(通过 API 连接集成平台和服务)、工作流(规划和实现复杂功能逻辑)、记忆库(保留和理解对话细节,添加外部知识库),并为您提供相关参考链接。
2025-04-14
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
有哪些针对CoT能力的微调工具
以下是一些针对 CoT 能力的微调工具: 1. Selfconsistency CoT:使用手动设计的 Prompt 生成采样一组不同的推理路径,再通过“多数投票”找到推理步骤中“最一致”的路径,使用这条解码路径驱动原始的贪心解码方式来提示 CoT 性能。 2. MMCoT:侧重使用微调方法嵌入 CoT,通过将语言和图像合并在一个包含推理生成与答案推理的两阶段的框架中,使用微调大模型赋予输入多模态 CoT 的能力。 3. GoTInput 方法:通过对 CoT 生成的思维图进行抽取构建三元组,并使用 GNN 将文本、图像与 CoT 统一,从而生成包含 CoT 信息的最终答案。 4. VCoT:解决了一个输出多模态的问题,通过以生成图片的“标题”以及识别核心关注点作为图像生成的启动过程,通过递归的方式填充图像信息,从而实现输出多模态。 此外,在将 DoT 扩展到预训练的扩散语言模型 Plaid 1B 并在更复杂的推理任务上进行评估时,自回归模型和扩散模型在使用 CoT 或 DoT 进行微调时都显示出显著提高的性能。在微调 Plaid 1B 时,也探索了几种替代方案。 在强化学习驱动的合成数据生成与模型优化流程中,也涉及到 CoT 的相关应用和优化,如初始 CoT 生成、CoT 存储等。
2025-04-12