Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可以把tripo的节点接入comfyui吗

Answer

要将 tripo 的节点接入 ComfyUI,您可以参考以下步骤:

  1. 确保后面有一个空格。然后将 requirements_win.txt 文件拖到命令提示符中(如果您在 Windows 上;否则,选择另一个文件 requirements.txt)。拖动文件将在命令提示符中复制其路径。
  2. 按 Enter 键,这将安装所有所需的依赖项,使其与 ComfyUI 兼容。请注意,如果为 Comfy 使用了虚拟环境,必须首先激活它。
  3. 在使用自定义节点之前,有一些要注意的事项:
    • 您的图像必须放在一个以[number]_[whatever]命名的文件夹中。那个数字很重要:LoRA 脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如 5。然后,下划线是必须的。
    • 对于 data_path,您必须写入包含数据库文件夹的文件夹路径。例如:C:\database\5_myimages ,您必须写 C:\database 。
    • Python 在这里需要斜杠,但节点会自动将所有反斜杠转换为斜杠。文件夹名称中的空格也不是问题。
  4. 参数方面:
    • 在第一行,您可以从 checkpoint 文件夹中选择任何模型。然而,据说您必须选择一个基本模型进行 LoRA 训练。
    • 您选择一个名字为您的 LoRA,如果默认值对您不好,就更改这些值(epochs 数应该接近 40),然后启动工作流程!
  5. 一旦您点击 Queue Prompt,所有事情都会在命令提示符中发生。
  6. 建议与字幕自定义节点和 WD14 标签一起使用。但请注意,在制作字幕时禁用 LoRA 训练节点。因为 Comfy 可能会在制作字幕之前启动训练。
  7. 关于 Tensorboard:训练会在 log 文件夹中创建一个日志文件,该文件夹会在 Comfy 的根文件夹中创建。该日志可能是一个可以在 Tensorboard UI 中加载的文件。

ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点)、处理节点(如采样器节点、调度器节点、CFG Scale 节点、步数节点)、输出节点(如图像输出节点)、辅助节点(如批处理节点、图像变换节点、图像融合节点)。用户可以通过拖放和连接各种节点来创建自定义的图像生成工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\ComfyUI\custom_nodes 。ComfyUI 还提供了丰富的节点管理功能,包括保存/加载节点图、复制/粘贴节点、批量编辑等。

Content generated by AI large model, please carefully verify (powered by aily)

References

直接在Comfy UI中训练LoRA模型

确保后面有一个空格。然后将requirements_win.txt文件拖到命令提示符中(如果你在Windows上;否则,我假设你应该选择另一个文件requirements.txt)。拖动文件将在命令提示符中复制其路径。按Enter键,这将安装所有所需的依赖项,使其与ComfyUI兼容。请注意,如果你为Comfy使用了虚拟环境,必须首先激活它。教程在使用自定义节点之前,有一些要注意的事项:你的图像必须放在一个以[number]_[whatever]命名的文件夹中。那个数字很重要:LoRA脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如5。然后,下划线是必须的。其余部分不重--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------p/对于data_path,你必须写入包含数据库文件夹的文件夹路径。因此,在这种情况下:C:\database\5_myimages你必须写C:\database至于终极问题:“斜杠还是反斜杠?”…不用担心!Python在这里需要斜杠,但节点会自动将所有反斜杠转换为斜杠。文件夹名称中的空格也不是问题。参数在第一行,你可以从checkpoint文件夹中选择任何模型。然而,据说你必须选择一个基本模型进行LoRA训练。这是为什么我不得而知。但你完全可以尝试使用微调,没有任何阻碍。但如果你想遵循规则,请确保在checkpoint文件夹中有一个基本模型!

直接在Comfy UI中训练LoRA模型

这就是你需要了解的全部!其余都很简单:你选择一个名字为你的LoRA,如果默认值对你不好,就更改这些值(epochs数应该接近40),然后启动工作流程!一旦你点击Queue Prompt,所有事情都会在命令提示符中发生。去看一下。即使你对LoRA训练是新手,你也会很快明白命令提示符显示了训练的进度。(或者…显示了错误x)。我建议与我的字幕自定义节点和WD14标签一起使用。这条优雅而简单的线完成了字幕和训练!然而,请确保在制作字幕时禁用LoRA训练节点。原因是Comfy可能会在制作字幕之前启动训练。而它会这么做。它不关心是否有字幕存在。所以最好保险起见:在制作字幕时绕过训练节点,然后启用它,再次启动工作流程进行训练。我本可以找到一种方法将训练节点与保存节点关联起来,确保在制作字幕后才进行训练。然而,我决定不这样做。因为即使WD14标签非常出色,你可能还想在训练之前打开字幕并手动编辑它们。在两个节点之间创建链接将使整个过程变得自动化,而不让我们有机会修改字幕。寻求对Tensorboard的帮助!:)字幕,训练...还有一个遗漏的部分。如果你了解LoRA,你应该听说过Tensorboard。这是一个用于分析模型训练数据的系统。我很乐意将其包含在ComfyUI中。...但我完全不知道该怎么做^^’。目前,训练会在log文件夹中创建一个日志文件,该文件夹会在Comfy的根文件夹中创建。我认为该日志是一个我们可以在Tensorboard UI中加载的文件。但我很想让数据出现在ComfyUI中。有人能帮我吗?谢谢^^。我的第一个LoRA的结果:

3、节点认识 副本

ComfyUI的核心是它的节点式界面。用户可以通过拖放和连接各种节点来创建自定义的图像生成工作流。以下是对ComfyUI节点系统的详细介绍:[heading2]节点类型[content]ComfyUI提供了多种不同类型的节点,包括:1.输入节点:文本提示节点:用于输入生成图像的文本描述图像输入节点:用于输入基础图像进行二次生成噪声节点:用于输入初始噪声图像1.处理节点:采样器节点:选择图像生成所使用的采样器调度器节点:选择图像生成所使用的调度器CFG Scale节点:调整引导式采样的强度步数节点:设置图像生成的迭代步数2.输出节点:图像输出节点:显示生成的最终图像3.辅助节点:批处理节点:支持批量生成多个图像图像变换节点:提供图像旋转、翻转等功能图像融合节点:可以将多个图像合并成一个[heading2]节点连接[content]用户可以通过拖动节点之间的连接线来构建整个工作流。连接线代表了数据在节点之间的流动。例如,您可以将文本提示节点连接到采样器节点,再连接到图像输出节点,形成一个完整的文本到图像生成流程。[heading2]节点自定义[content]除了使用内置节点,用户还可以创建自定义节点来扩展ComfyUI的功能。这为高级用户和开发者提供了极大的灵活性。自定义节点可以是新的输入、处理或输出节点,甚至是复杂的子工作流。这使得ComfyUI能够适应各种独特的图像生成需求。自定义节点安装目录:D:\ComfyUI\custom_nodes[heading2]节点管理[content]ComfyUI提供了丰富的节点管理功能,包括保存/加载节点图、复制/粘贴节点、批量编辑等。这些功能使得创建和重复使用工作流变得更加容易。

Others are asking
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
tripo ai是啥
Tripo AI 是 VAST 发布的在线 3D 建模平台。 它能够利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于一个数十亿参数级别的 3D 大模型,实现快速的 2D 到 3D 转换,并提供 AI 驱动的精准度和细节。 其具有以下特点: 注册/登录:通过输入邮箱地址接收验证码或使用谷歌账户可完成注册登录,登录后能看到用户名及拥有的点数。 界面:界面简洁,上方是工具导航栏,中间是公共作品展示区,底部是生成模型的工作区域,包括输入框和创建按钮。 页面:包含 Create 页面(创作主战场,可参考他人提示词)、My Models 页面(个人作品库)、Favorite 页面(私人收藏列表)。 此外,Tripo API 与 ComfyUI 集成良好,还拥有热门的 3D 创作者/开发者社区,最终目标是在即将到来的 3D 时代让每个人都成为超级创作者。
2025-03-09
dify工作流中agent节点怎么使用
在 Dify 工作流中使用 Agent 节点的步骤如下: 1. 搭建工作流框架: 进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求自定义工作流信息,点击确认完成新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件(提供能力工具拓展 Agent 能力边界)、大模型(调用 LLM 实现文本内容生成)、代码(支持编写简单脚本处理数据)。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点完成框架搭建。 2. 测试 Agent 节点功能: 完成任何一个节点的配置后,都需要进行试运行测试以验证节点的运行效果。 步骤一:点击「测试该节点」。 步骤二:按格式要求输入待测试的输入内容,如果是 array 等其他格式,请自行对话 AI 或搜索网络确认格式要求。 步骤三:点击「展开运行结果」,检查输入、输出项是否有误。如果有误,请依次检查“测试输入内容”、“节点配置”是否有误,以及优化“提示词”以提升对生成内容的约束力。当多次测试时输入与输出都符合预期,就可以进入下一个子任务的配置。
2025-04-05
有哪些节点式AI对话工具
以下是一些节点式 AI 对话工具: 1. Coze 中的问答节点: 是 Coze 工作流中的重要组件,能让机器人主动收集用户信息,实现更自然的对话交互。 可收集用户具体需求和信息,引导用户选择特定功能或服务,确保获取完整必要信息。 有两种问答方式:直接回答模式,用户用自然语言自由回答,bot 提取关键信息;选项回答模式,提供预设选项供用户选择,适用于功能选择菜单、分步骤引导、服务类型分类等。 配置说明包括选择执行此节点的模型、设置输入参数、提问内容、回答类型和输出等。 2. Coze 中的图像流节点: 专门用于图像处理,可通过可视化操作添加图像处理节点构建流程生成图像。 图像流发布后可在智能体或工作流中使用。 3. Coze 中的大模型节点: 调用大语言模型,使用变量和提示词生成回复。 模型方面,基础版和专业版按需使用,专业版支持接入更多模型资源。 模型选择右下角有生成多样性设置,包括精确模式、平衡模式和创意模式。 输入包括智能体对话历史、参数名与变量值,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-28
我现在是学了一段时间的comfyui+flux,接下来准备学Python开发comfyui节点、对接模型,这样学下去方向有没有问题呢
您学习 ComfyUI 和 Flux 一段时间后准备学习 Python 开发 ComfyUI 节点并对接模型,这个方向是可行的。以下是一些相关的知识和要点供您参考: 工作流方面: 工作流节点可直接拖动单个节点到任意位置,也可按住 Control 键并用鼠标左键滑框选中多个节点,再按 Shift 键一起拖动。 选中节点后右键新建组,可修改组名、颜色等,组被覆盖时可直接拖动组。 选中节点后右键选择对齐方式,如顶部对齐、左边对齐等。 第三方节点的安装方式包括在 customer NODE manager 中安装、在 GitHub 上复制链接安装、通过终端输入指令安装、在秋叶启动器的版本管理中安装。 可通过 group by Parser 节点控制组,也可通过按住节点按 control b 跳过或按 control m 终止执行。 模型方面: 噪声强度由种子调节,种子固定噪声分布方式,噪声与 CLIP 无关,增大噪声设置值会增强模型对图片重绘的程度。 模型版本的提示词差异:1.5 以 tag 为主,XL 论文称以自然语言为主,但实际使用中因模型微调情况可能仍需用 tag。 Flux 模型有时生成黑图,可能有修复方案,需自行查询。图像生成结果为空,可能是 VAE 编码器与大模型未连接,调整连接后问题解决。 安装方面: 自动打标 joy_caption 副本的节点安装地址为 D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes。 安装步骤包括:(Comfyui evn python.exe)python m pip install rrequirements.txt 或点击 install_req.bat,注意 transformers 版本不能太低。 下载模型或者运行 ComfyUI 自动下载模型到合适文件夹,如从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 新版的 PuLID 解决了模型污染的问题,使用新版的节点需要禁用或者删除之前的 PuLID 节点,不然可能会有冲突问题。模型放在 ComfyUI\\models\\pulid 文件夹里面,注意用新版的。 如果使用 PuLID,还需要安装 EVA CLIP 等模型。
2025-03-21
想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?
在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容: 1. 大模型节点: 您可以根据自己的风格选择不同的大模型,推荐使用: AWPainting,链接:https://civitai.com/models/84476/awpainting primemixanything,链接:https://civitai.com/models/75089/primemixanything xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic 2. 关键词节点: 可以使用工作流内的关键词,也可以输入自己的正负面关键词。 3. Lora 节点: 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。 4. ControlNet 节点: 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 5. 采样器节点: 所有生图的老演员了,Step 要选择高步数,35 50 即可。采样器默认的 euler a /dpmpp 2m sde 基础节点介绍: 1. Checkpoint 基础模型(大模型/底模型)节点: 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。 2. Clip 终止层数(clip skip)节点: ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。 3. Prompt 节点: 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。 4. KSampler 采样器: 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。 5. Empty Latent Image 潜空间图像: 设置出图尺寸,例如 10241024。输出入点:Latent 连接 KSampler 采样器的 Latent。 此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。
2025-03-15
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
comfyui怎么一键连接节点
要在 ComfyUI 中一键连接节点,可以按照以下步骤进行操作: 1. 了解成对的节点:SetNode 可当成无线发射器,GetNode 可当成无线接收器。一个发射器可以对应多个接收器,但它是定向发射的,不会自动连接。 2. 添加节点的方式:推荐在普通节点上点击右键,找到“添加设置节点”和“添加获取节点”。需注意从输出拉出连线后的查找节点列表里找不到这两个节点。 3. 具体连接操作:将输出连接到“SetNode”节点上,并为其起一个好记的名字。在要连入的节点附近添加“GetNode”节点,选择刚刚起的名字,把这个节点和要输入的部分连接上即可。 此外,ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点等)、处理节点(如采样器节点、调度器节点等)、输出节点(如图像输出节点)和辅助节点(如批处理节点、图像变换节点等)。用户可以通过拖动节点之间的连接线来构建整个工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。ComfyUI 的界面包括顶部工具栏(包含全局操作和工具)、左侧面板(用于显示节点库)和中央画布(主要工作区域)。
2025-03-13
coze的智能体如何接入微信?
要将 Coze 智能体接入微信,可按以下步骤操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,可以看到运行的是两个服务。 2. 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效作为过期时间,指定团队空间,勾选所有权限。保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏 bot/之后的数据就是该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 绑定微信:准备一个闲置的微信,点击容器,点击“wcandyaibot”后面的日志按钮,用提前预备好的微信进行扫码。手动刷新界面,点击“刷新日志”,若看到 WeChat login success,即表示微信登录成功。为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,若显示“wechat login seccess”则表示微信正常登录中。 6. 效果测试:把绑定的微信号拉到群里或者单独对话,训练的数据越好,对话效果越好。
2025-04-11
飞书多维表格如何接入gemini?
要将飞书多维表格接入 Gemini,以下是一些相关的操作步骤和说明: 首先,请注意部分操作需要搭配 Google 云服务或自备 API 才可以正常练习,具体内容)。友情提示,从这一部分及以后内容,多数都会是配合代码完成的,如果您是 0 代码学习者,尝试看懂提示词,并在一些 AI 产品上尝试使用。 接下来,课程将深入探讨代码部分。为了运行这个笔记本,需要执行一些设置代码。首先,需要导入 utils 并进行身份验证,这意味着需要设置一些凭证和项目 ID,以便能够从笔记本环境调用云端的 Gemini API。项目包含在云中使用的资源和 Gemini API。这个设置过程确保了笔记本能够正确连接和使用 Gemini 模型。 对于本课程,还需要指定一个区域,即代码将在哪里执行。在这种情况下,使用的是 uscentral1。 接下来,课程将导入 Vertex AI SDK。Vertex AI SDK 可以看作是一个 Python 工具包,帮助用户与 Gemini 交互。通过这个 SDK,可以使用 Python 调用 Gemini API 并获得响应。 在笔记本中,需要初始化 Vertex SDK。这意味着需要告诉 SDK 以下信息: 1. 使用的项目 2. 想要使用 Gemini 模型的区域 3. 用户凭证 通过提供这些信息,Gemini API 就能识别用户身份,并确认用户有权使用 API。 为了使用 Gemini API,需要从 SDK 中导入 generative_model。设置完成后,需要指定具体的模型。这可以通过设置 model 变量来完成,使用刚刚导入的 generative_model,并选择特定的 Gemini 模型。在这个案例中,课程将使用 Gemini 1.0 Pro 版本。这个选择反映了对于当前任务,Gemini Pro 可能是最合适的平衡点,提供了良好的性能和效率。 此外,Gemini 不仅是单一模型,而是一个模型系列,包含不同大小的模型,每种大小都针对特定的计算限制和应用需求而定制。首先是 Gemini Ultra,这是系列中最大和最强大的模型。Gemini Pro 被设计为多功能的主力模型,平衡了模型性能和速度。还有 Gemini Flash,这是一个专门为高容量任务设计的最快、最具成本效益的模型。最后是 Gemini Nano,它是 Gemini 家族中的轻量级成员,专门设计用于直接在用户设备上运行。
2025-03-28
coze开发硬件接入ai
如果您想开发硬件接入 Coze 智能体,以下是一些相关信息: 在服务器设置方面,对于 chatgptonwechat(简称 CoW)项目,可点击“Docker”中的“编排模板”中的“添加”按钮。备注说明版可借用“程序员安仔”封装的代码。将编译好的内容复制进来,在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”,若无法正常启动,可查看文档后面的“常见问题”。 关于计划,包括弄共学、做网页连接 Coze 等,涉及网页、小程序、App、桌面应用、浏览器插件等方面,还提到了硬件相关的工作安排。 在入门 Coze 工作流方面,首先要明确任务目标与执行形式,包括详细描述期望获得的输出内容(如文本、图像、音频等形式的数据,以及具体格式和结构、质量标准),预估任务的可行性,确定任务的执行形式。例如对于一篇文章,可参照特定框架进行微调,评估任务可行性,结合使用习惯确定预期的执行形式。
2025-03-27
COZE接入企业微信
要将 COZE 接入企业微信,您可以按照以下步骤进行操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,查看运行的服务,手动刷新日志,若看到“WeChat login success”,则接入成功。 2. 在 COZE 官网左下角选择 COZE API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效,指定团队空间,勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏“bot/”之后的数据即为该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,出现“Bot as API”,勾选并确定应用已成功授权。 5. 配置微信客服: 访问微信客服 https://kf.weixin.qq.com/,点击开通,勾选同意,点击下一步,按步骤填写,注册企业微信。 点击配置,到微信客服的企业信息,复制企业 ID 到 COZE 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(若为空,点击“随机获取”),到 COZE 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 COZE 页面粘贴。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 COZE 页面粘贴,点击保存。 请注意,第一次设置回调地址时,目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。
2025-03-21
COZE接入企业微信
要将 COZE 接入企业微信,您可以按照以下步骤进行操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,查看运行的服务,手动刷新日志,若看到“WeChat login success”,则成功接入微信。 2. 在 COZE 官网左下角选择 COZE API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效,指定团队空间,勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏“bot/”之后的数据即为该机器人的 Bot ID。 4. 进行 API 授权,点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 配置微信客服: 访问微信客服 https://kf.weixin.qq.com/,点击开通,勾选同意,点击下一步,按步骤填写,注册企业微信。 点击配置>到微信客服的企业信息,复制企业 ID>到 COZE 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(若为空,点击“随机获取”),到 COZE 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 COZE 的页面粘贴。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 COZE 的页面粘贴,点击保存。 请注意,第一次设置回调地址时,目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。
2025-03-21
COZE接入企业微信
要将 COZE 接入企业微信,可参考以下步骤: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,可看到运行的两个服务。然后点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。此界面不会实时更新显示,需手动刷新,若看到“WeChat login success”,则接入微信成功。 2. 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效作为过期时间,选择指定团队空间,勾选所有权限。保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏“bot/”之后的数据即为该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 配置微信客服: 访问微信客服 https://kf.weixin.qq.com/,点击开通,勾选同意,点击下一步,按步骤填写,注册企业微信。 点击配置>到微信客服的企业信息,复制企业 ID>到 coze 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(若为空,点击“随机获取”),到 coze 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。 注意:目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。
2025-03-21