Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

对话流的作用

Answer

对话流在不同的场景中具有多种作用:

  • 在与律师相关的场景中,其工作流设计要点包括:
    • 有独特的欢迎语,如“十方诸天尊,其数如沙尘,化形十方界,普济度天人。灵机应召来也!”,能改善心理状态,还可根据需求灵活变化。
    • 设计了检查环节,若觉得不对劲偏离要求,可通过“守符诏令”指令重新发挥效力。
    • 采用对话式、分模块每次确认的形式,最终生成质量往往更高。
    • 请用户检查写作方案是否符合要求,重点关注操作建议的具体性、清晰性和对实际解决问题的帮助,若不满意会重新生成。若满意则进一步深化写作,每次对话输出文章的一个部分。
  • 在 Coze 平台中,工作流是核心概念,它是一系列有序的任务或操作,用于完成特定的业务流程。适用场景广泛,如多步骤任务、插件调用、数据处理等。通过可视化方式将不同功能模块串联,可更直观地设计和管理复杂任务,提高开发效率和系统可维护性。创建工作流一般建议直接在 bot 里新建,若创建的工作流不见了,可在首页工作空间-资源库-工作流中查找。
  • 在 LangGraph 中,构建图时从一个节点开始,用用户当前信息预填充状态。每个小工作流程包含 5 个节点:enter_、助手、_safe_tools、*_sensitive_tools、leave_skill。由于工作流程相似,本可定义工厂函数生成,但教程中会逐一明确定义,如创建航班预订助手、租车助手、酒店预订、旅行预订助手和主助手等工作流程图。
Content generated by AI large model, please carefully verify (powered by aily)

References

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

5.请用户检查你的写作方案是否符合要求,重点是给出的操作建议是否具体、清晰、对于实际解决问题有帮助,而非仅仅是一个解决方向。并告诉用户,如果不满意,你会再根据符和敕的要求重新生成写作方案。6.如果用户不满意,根据符和敕的要求以及用户的建议重新生成写作方案;如果用户满意,根据写作方案进一步深化写作。深化写作每一次对话输出文章的一个部分,用户满意后再继续输出下一部分。令的部分就是具体的工作流,包括要求灵机如何与用户对话、与用户确认工作结果。这个工作流的设计要点(亮点)主要有:1.设计了很带劲(发癫)的欢迎语——“十方诸天尊,其数如沙尘,化形十方界,普济度天人。灵机应召来也!”这一点其实非常重要,因为日常工作中有“人”陪你发癫可以很好地改善心理状态——毕竟尤其律师绝大多数的时候都是在遵守着那套“精英模版”说着老板和客户爱听的话。但当你和AI灵机配合工作时,你可以让祂和你一起发癫,说你爱听的话——你可以今天让祂“灵机应召来也!”,明天让祂“公主殿下,您的骑士来了!”祂会包容你的。1.设计了检查环节,如果觉得灵机不对劲偏离符箓要求时,可以通过“守符诏令”指令,重新发挥符箓的效力。2.没有要求灵机一次生成全文,而是采用了对话式,分模块每次确认的形式——这种方式的最终生成质量往往会比一次生成的高非常多。

大雨:coze工作流节点大全

大家好,欢迎参加今天的分享课程。我们将一起探索Coze平台及其在AI应用开发中的作用。首先,什么是Coze?Coze是一个强大的AI对话平台,旨在为创作者和开发者提供前所未有的机会。在人工智能迅速发展的今天,Coze的出现为我们带来了更多可能性。在Coze中,工作流是一个核心概念。它允许用户以可视化的方式组合各种功能模块,如插件、大语言模型、代码块等,从而实现复杂和稳定的业务流程编排。这对于处理多步骤任务、调用插件、数据处理等场景尤为重要。[heading1]Coze工作流概述[content]那么,什么是工作流呢?简单来说,工作流是一系列有序的任务或操作,用于完成特定的业务流程。在Coze中,工作流通过可视化的方式,将不同的功能模块串联起来,形成一个完整的处理流程。这使得我们可以更直观地设计和管理复杂的任务。工作流的适用场景非常广泛,例如:多步骤任务:当一个任务需要分多个步骤完成时,工作流可以帮助我们清晰地定义每个步骤的顺序和逻辑。插件调用:通过工作流,我们可以方便地调用外部插件,实现特定功能的扩展。数据处理:在处理复杂的数据时,工作流可以帮助我们定义数据的流转和处理方式。通过工作流,我们可以将复杂的任务拆解为多个可管理的部分,从而提高开发效率和系统的可维护性。[heading1]创建工作流[content]一般建议就简单一些,直接在bot里面新建工作流以前图像流是独立的,所以我们加了wf前缀,主要是方便后续查找如果发现自己创建的工作流不见了,可以在首页这里找工作空间-资源库-工作流

探索LangGraph:构建多专家协作模型

现在是我们开始构建图的时候了。和以前一样,我们将从一个节点开始,用用户的当前信息预填充状态。现在,让我们开始构建我们定制的工作流程。每个小工作流程的结构都和我们在第3部分中展示的完整工作流程图非常相似,它们都包含5个节点:1.enter_*:使用你之前定义的create_entry_node工具来创建一个ToolMessage,这个ToolMessage表明新的专业助手已经接管了工作。2.助手:这个由提示和大型语言模型(LLM)组成的模块会根据当前状态来决定是使用一个工具、向用户提问还是结束整个工作流程(返回到主助手)。3.*_safe_tools:这些是助手可以在不需要用户确认的情况下使用的“只读”工具。4.*_sensitive_tools:这些具有“写入”权限的工具需要用户的确认,并且在我们编译工作流程图时,它们会被设置一个interrupt_before。5.leave_skill:通过弹出dialog_state来表示主助手重新掌握了控制权。由于这些工作流程的相似性,我们本可以定义一个工厂函数来生成它们。但因为这是一个教程,我们会逐一明确地定义它们。首先,我们来创建一个航班预订助手,它专门负责管理用户更新和取消预订航班的流程。接下来,创建一个租车助手的工作流程图,它将负责处理所有的租车需求。然后,创建一个酒店预订的工作流程。之后,定义一个旅行预订助手。最后,创建一个主助手。这里是一个图片链接[heading3]对话[content]那真是很多内容!让我们在下面的对话轮次列表上运行它。这次,我们将有更少的确认。

Others are asking
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
请为我生成一些提示词以用于将视频中的对话转化为文本形式
以下是为您生成的一些用于将视频中的对话转化为文本形式的提示词: 1. 角色:专业视频转文本工作者 2. 版本:1.0 3. 描述:能够准确、清晰地将视频中的对话转换为文本 4. 目标:完整、无误地将视频中的对话转化为易于理解的文本 5. 限制:不遗漏重要信息,不添加主观内容 6. 技能:熟练掌握语音识别和文字转换技巧 7. 工作流程:先仔细聆听视频对话,然后逐句转换为文字,注意标点和语法的正确使用 8. 初始化:您好,我准备开始将视频对话转换为文本 事件驱动句式: 1. As the video plays... 2. When the speakers start talking... 3. At the beginning of the video... 空间锁定技巧: 1. on the left side of the screen... 2. behind the main character... 3. from the top corner of the frame... 动态呼应原则: 1. swaying with the background music... 2. reacting to the other characters' actions... 3. matching the tone of the video...
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
我正在找工作,需要写简历和准备面试,什么AI软件可以对我现在的情况起到辅助作用呢?
以下是一些可以在您找工作写简历和准备面试时提供辅助的 AI 软件: 1. 写简历方面: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 2. 面试准备方面: Applicant AI:人工智能面试系统,通过 AI 视频聊天快速筛选求职者,匹配招聘标准,自动推送合适候选人至下一阶段,减少人工干预,可安排面试流程,提高招聘效率。 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障,能帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 InterviewAI:在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 需要注意的是,使用这些产品时,要考虑到数据安全性和隐私保护的问题。
2025-03-13
coze能对电商工作起到哪些提升作用?
Coze 能对电商工作起到以下提升作用: 1. 个性化邮件发送:市场团队可以利用 Coze 的工作流,将客户名单作为输入数组,通过循环节点依次为每位客户生成定制化邮件,在几分钟内完成邮件发送,避免重复劳动。 2. 商品评价分析:运营团队能够把电商平台的商品评价数据作为输入数组,使用循环节点逐一分析,计算好评率和差评率,并生成总结报告。原本耗时 2 3 小时的人工作业可缩短到几分钟,同时避免出错。 Coze 的工作流具有以下特点: 1. 可视化:允许用户通过可视化的方式组合各种功能模块,如插件、大语言模型、代码块等,从而实现复杂和稳定的业务流程编排。 2. 低代码:工作流的创建和编辑可以通过可视化的拖拽界面完成,无需编写代码,大大降低了工作流搭建的门槛。 3. 功能丰富:支持丰富的功能模块,包括调用大语言模型进行文本生成、调用插件进行数据处理等,用户可根据需求灵活组合。 4. 集成性强:创建好的工作流可以直接集成到 Coze 的聊天机器人中使用,实现复杂的业务逻辑。 循环节点是自动化流程的重要组成部分,通常分为数组循环、指定次数循环和无限循环三种核心模式。数组循环适用于对一组有序数据逐条处理的场景,是自动化流程中最常见的一种模式,能够高效地逐条执行重复性操作。
2025-03-09
RAG内LLM的主要作用,简单概括
RAG(检索增强生成)中LLM(大语言模型)的主要作用包括: 1. 利用外部检索到的知识片段生成更符合要求的答案。由于LLM无法记住所有知识,尤其是长尾知识,且知识容易过时、不好更新,输出难以解释和验证,容易泄露隐私训练数据,规模大导致训练和运行成本高,通过RAG为LLM提供额外且及时更新的知识源,有助于生成更准确和有用的回答。 2. 在RAG的工作流程中,LLM接收整合后的知识片段和特定指令,利用其推理能力生成针对用户问题的回答。 3. 事实性知识与LLM的推理能力相分离,LLM专注于运用推理能力处理外部知识源提供的信息。
2025-03-08
想学习Ai制作用哪些免费软件好
以下是一些适合学习 AI 制作的免费软件: 1. 图像制作: 最透明的选项:Adobe Firefly(https://www.adobe.com/sensei/generativeai/firefly.html) 开源选项:Stable Diffusion(https://stablediffusionui.github.io/) 最佳免费选项:Bing 或 Bing Image Creator(https://www.bing.com/images/create)(使用 DALLE),Playground(https://playgroundai.com/)(允许您使用多个模型) 最佳质量图像:Midjourney(https://midjourney.com/) 2. 数字人制作: HEYGEN:人物灵活,五官自然,视频生成很快,但中文人声选择较少。 DID:制作简单,人物灵活,免费版下载后有水印。 KreadoAI:免费,功能齐全,但音色较 AI。 对于想出点子,最佳免费选项是必应(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx),付费选项是 ChatGPT 4.0。 在制作视频方面: 用于在视频中为人脸制作动画的最佳工具是 DiD(https://www.did.com/)。 用于从文本创建视频的最佳工具是 Runway v2(https://app.runwayml.com/)。 最佳语音克隆:ElevenLabs(https://beta.elevenlabs.io/speechsynthesis)
2025-02-23
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17