Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能的主要分支都有哪些

Answer

人工智能的主要分支包括:

  1. 自然语言处理(NLP):涵盖自然语言理解(NLU)和自然语言生成(NLG),要求机器准确理解和生成人类语言,是人工智能领域中不可或缺的重要分支。
  2. 机器学习:是实现人工智能的途径之一,近 30 多年已发展为多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。
  3. 推理:利用训练好的模型,使用新数据推理出各种结论,也称为预测或推断。
  4. 训练:通过大数据训练出复杂的神经网络模型,使其能够适应特定功能。

此外,“人工智能”的概念自 1956 年提出后,其所涵盖的理论范围及技术方法不断扩展,如今已应用于不同领域。

Content generated by AI large model, please carefully verify (powered by aily)

References

几个故事告诉你 NLP、NLU、NLG 分别是什么

自然语言处理(NLP)如今已经成为人工智能领域中不可或缺的重要分支。然而,令人惊讶的是,NLP的起源甚至早于"人工智能"概念的诞生(达特茅斯会议)。在这个领域中,最广为人知且被普遍认可的起点,要追溯到艾伦·图灵在其开创性论文《计算机器与智能》中提出的"图灵测试"。他提出的核心理念是:让计算机能够与人类进行如此自然、流畅的对话,以至于人类无法分辨对方是机器还是真人。这个看似简单的概念实际上涵盖了自然语言处理的两大核心领域:自然语言理解(NLU)和自然语言生成(NLG)。前者要求机器能够准确理解人类语言的复杂性和微妙之处,而后者则需要机器能够生成流畅、自然、符合语境的人类语言。

【非官方解读】全球人工智能治理大变局之欧盟人工智能治理 监管框架评述及启示

[heading4](1)人工智能目前人们对人工智能的定义并不统一。欧盟广泛使用的人工智能定义来自《2018年人工智能战略》,该战略指出:“人工智能(AI)是指通过分析环境并采取行动(具有一定程度的自主性)以实现特定目标来展示其智能行为的系统。基于人工智能的系统可以完全依赖于软件,在虚拟世界中运行(例如语音助手、图像分析软件、搜索引擎、语音和人脸识别系统)或者也可以嵌入硬件设备中(例如高级机器人、自动驾驶汽车、无人机或物联网应用程序)。”[4]郭佳楠:《欧盟人工智能的政策、伦理准则及规制路径研究》,载《互联网天地》,2023年第1期第26-32页。2021年《AI法案》提案第3条对人工智能的定义为:“AI系统指采用附录1中所列的一种或多种技术和方法开发的软件,该软件能生成影响交互环境的输出(如内容、预测、建议或决策),以实现人为指定的特定目标。”其中,附录1列举的技术方法主要包括:机器学习方法(包括监督、无监督、强化和深度学习);基于逻辑和知识的方法(包括知识表示、归纳编程、知识库、影响和演绎引擎、符号推理和专家系统);统计方法,贝叶斯估计,以及搜索和优化方法。事实上,“人工智能”的概念自1956年于美国的达特茅斯学会上被提出后,其所涵盖的理论范围及技术方法随着时代的发展也在不断扩展。如今,人工智能技术也发展出多个技术分支,应用于不同的领域中。相比于《2018年人工智能战略》,2021年《AI法案》提案对于人工智能的定义采取更加宽泛的界定标准。值得注意的是,在2022年《AI法案》妥协版本中,欧盟理事会及欧洲议会对于上述界定的观点有进一步意见,其认为“AI系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。

AIGC常见名词解释(字典篇)

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。[heading1]自然语言是什么?[content]自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。[heading1]AI的推理是什么?[content]推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。[heading1]AI的训练是什么?[content]训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
我想系统性的了解AI,你能为我画一个思维导图吗,或者结构性的帮我介绍。譬如:第一级:人工智能,第二级人工智能下的所有分支
以下是为您系统性介绍 AI 的结构内容: 第一级:人工智能 第二级: 1. 基本概念 术语和基础概念 主要分支(机器学习、深度学习、自然语言处理等) 分支之间的联系 2. 学习之旅 入门课程推荐(李宏毅老师的课程等) 在线教育平台课程 3. 特定模块 图像 音乐 视频等 4. 提示词技巧 5. 实践尝试 实践巩固知识 作品分享 6. 体验产品 ChatGPT Kimi Chat 智谱 文心一言等 此外,为您推荐三本神经科学书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun) 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz) 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著) 还有《雪梅 May 的 AI 学习日记》中提到的学习经验,如第一阶段迈出第一步,看书听课进社区,包括系统性学习、初步探索、加入 AI 社区等。
2025-01-21
人工智能的分支,除了机器学习还有什么
人工智能的分支除了机器学习,还包括以下几个主要领域: 1. 自然语言处理(NLP):这是人工智能和语言学领域的分支学科,探讨如何处理及运用自然语言,包括认知、理解、生成等部分。 2. 推理:利用训练好的模型,使用新数据推理出各种结论,借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论。 3. 训练:通过大数据训练出复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。 4. 深度学习:是机器学习的一个子领域,尝试模拟人脑的工作方式,创建人工神经网络来处理数据,在诸如图像识别、语音识别和自然语言处理等任务中非常有效。 5. 大语言模型:是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言。 6. 强化学习:是人工智能与机器学习领域中一个重要的分支,通过定义状态、动作与奖励等元素,让 AI 求解在各种状态下如何选择动作,以获得最大的期望奖励总和。
2024-10-15
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25
对于NL2SQL,主要是让大模型生成sql语句,如何对提示词进行优化
目前知识库中没有关于 NL2SQL 提示词优化的相关内容。但一般来说,优化 NL2SQL 的提示词可以从以下几个方面考虑: 1. 明确输入描述的准确性和完整性,避免模糊和歧义。 2. 提供具体的示例和上下文信息,帮助模型更好地理解需求。 3. 强调关键的业务逻辑和约束条件。 4. 尝试使用不同的表述方式和词汇,以找到最适合模型理解的方式。 您可以参考相关的学术研究和实践经验,不断尝试和改进提示词,以获得更准确的 SQL 语句生成效果。
2025-03-21
以水稻主要物候期遥感识别为主题,生成一篇论文大纲
以下是以水稻主要物候期遥感识别为主题的一篇论文大纲示例: 一、引言 1. 研究背景与意义 2. 国内外研究现状 3. 研究目的与内容 二、水稻物候期相关理论与遥感技术基础 1. 水稻物候期的定义与特征 2. 常用的遥感技术及原理 3. 遥感数据的类型与特点 三、水稻主要物候期的遥感特征分析 1. 不同物候期水稻的光谱特征 2. 多时相遥感数据在物候期识别中的应用 3. 影响遥感识别的因素 四、水稻主要物候期遥感识别方法 1. 基于光谱特征的识别方法 2. 基于植被指数的识别方法 3. 机器学习与深度学习在物候期识别中的应用 五、实验与结果分析 1. 研究区域与数据获取 2. 实验设计与流程 3. 识别结果的精度评估 4. 结果分析与讨论 六、结论与展望 1. 研究成果总结 2. 研究的局限性 3. 未来研究方向与展望 以上大纲仅供参考,您可根据实际研究需求进行调整和完善。
2025-03-21
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
请主要介绍你平台,我在此平台如果更好学到关于AI的东西
WaytoAGI(通往AGI之路)是一个致力于人工智能学习的中文知识库和社区平台,具有以下特点和优势: 1. 社区介绍: 汇集了上千个人工智能网站和工具,提供最新的AI工具、应用、智能体和行业资讯。 拥有丰富多样的学习资源,包括文章、教程、工具推荐以及最新的行业资讯等。 定期组织实践活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了大型共创项目。 在没有任何推广的情况下,一年时间已有超过100万用户和超千万次的访问量。 目标是让每个人的学习过程少走弯路,让更多的人因AI而强大,目前合作过众多公司和产品。 2. 基础通识课: 介绍了AI技术的发展与应用,包括流式训练方式提升训练速度和质量、多种AI生成工具、端侧大模型的特点、AI工程平台等。 对coach平台的应用进行了说明,包括新手教程、文档、创建智能体、调用工作流节点和prompt构建提示词、调用插件等。 介绍了模型社区,包括为大模型提供服务的平台、按任务划分的模型库等。 为后续AI建站做预告。 3. 新手学习AI的方法: 了解AI基本概念:建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,可通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:AI领域广泛,可根据兴趣选择特定模块,掌握提示词技巧。 实践和尝试:实践是巩固知识的关键,尝试使用各种产品做出作品,知识库有实践作品和文章分享。 体验AI产品:与如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人互动,了解工作原理和交互方式。
2025-03-17
deepseek 在飞书中的主要应用场景有哪些
DeepSeek 在飞书中的主要应用场景包括: 1. 自动翻译、改写、图片 OCR、AI 抓取等,关键流程为从 URL 抓取内容➝DeepSeek R1 翻译➝自动改写文章风格➝生成高质量文章,还包括文本翻译、图片翻译、AI 生成爆款标题。 2. 生成深度报告、信息检索、数据整理等。 3. 处理大规模代码,例如粘贴几千行代码并用 XML 包裹,或让 AI 编写代码、搜索相关代码库。 4. 与 Coze 智能体、飞书多维表格和字段捷径(Agent)组合,实现高效的数据抓取与批量 AI 处理,适用于社交媒体数据分析、AI 内容生成、情绪分析等。 5. 在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,如辅助办公、教学设计、电商运营等。
2025-03-13