Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型训练方式

Answer

大模型的训练方式如下:

  1. 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比其训练和使用过程:
    • 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。
    • 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。
    • 找老师:即选择合适算法讲述“书本”内容,让大模型更好理解Token之间的关系。
    • 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。
    • 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token被视为模型处理和生成的文本单位,能代表单个字符、单词等,在将输入进行分词时,会形成词汇表。
  2. 10-0基础训练大模型的步骤:
    • 步骤一·创建数据集:进入厚德云-模型训练-数据集(https://portal.houdeyun.cn/sd/dataset),在数据集一栏中点击右上角创建数据集,输入数据集名称。zip文件可以是包含图片+标签txt,也可以只有图片没有打标文件,也可以一张一张单独上传照片,但建议提前把图片和标签打包成zip上传。Zip文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传zip以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,可预览到数据集的图片以及对应的标签。
    • 步骤二·Lora训练:点击Flux,基础模型会默认是FLUX 1.0D版本,选择数据集,点击右侧箭头,会跳出所有上传过的数据集。触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数,如果不知道如何设置,可以默认20重复次数和10轮训练轮数,可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后等待训练,会显示预览时间和进度条,训练完成的会显示出每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此lora生图的界面。点击下方的下载按钮则会自动下载到本地。
    • 步骤三·Lora生图:点击预览模型中间的生图会自动跳转到相应页面。模型上的数字代表模型强度,可在0.6-1.0之间调节,也可以自己添加lora文件,点击后会显示训练过的所有lora的所有轮次。VAE不需要替换,正向提示词输入写的提示词,可以选择基于这个提示词一次性生成几张图,选择生成图片的尺寸,横板、竖版、正方形。采样器和调度器新手小白可以默认,迭代步数可以在20-30之间调整,CFG可以在3.5-7.5之间调整,随机种子-1代表随机生成图。所有设置都好了以后,点击开始生态,生成的图会显示在右侧。如果有哪次生成结果觉得很不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,这样下次生成的图就会和这次的结果近似。如果确认了一张很合适的种子和参数,想要搞清放大,则点开高清修复,可以选择想放大的倍数,新手小白可以就默认这个算法,迭代步数建议在20-30之间,重回幅度根据需求调整,正常在0.3-0.7之间调整。
  3. 今日作业:按照比赛要求,收集六个主题中一个主题的素材并且训练出lora模型后提交lora模型与案例图像。提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd
Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

10-0基础训练大模型

进入厚德云-模型训练-数据集https://portal.houdeyun.cn/sd/dataset[heading2]步骤一·创建数据集[content]在数据集一栏中,点a击右上角创建数据集输入数据集名称这个zip文件可以是包含图片+标签txt,也可以只有图片没有打标文件(之后你可以在c站使用它的自动打标功能)你也可以一张一张单独上传照片,但还是建议提前把图片和标签打包成zip上传Zip文件里图片名称与标签文件应当匹配例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传zip以后等待一段时间确认创建数据集返回到上一个页面,等待一段时间后就会上传成功,可以点击详情检查可以预览到数据集的图片以及对应的标签[heading2]步骤二·Lora训练[content]点击Flux,基础模型会默认是FLUX 1.0D版本选择数据集,点击右侧箭头,会跳出你所有上传过的数据集触发词可有可无,取决于你的数据集是否有触发词模型效果预览提示词则随机抽取一个你数据集里的标签填入即可训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数如果不知道如何设置,可以默认20重复次数和10轮训练轮数可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力然后就可以等待训练了,会显示预览时间和进度条训练完成的会显示出每一轮的预览图鼠标悬浮到你想要的轮次模型,中间会有个生图,点击会自动跳转到使用此lora生图的界面。点击下方的下载按钮则会自动下载到本地

10-0基础训练大模型

上图中,点击预览模型中间的生图会自动跳转到这个页面模型上的数字代表模型强度,可以调节大小,正常默认为0.8,建议在0.6-1.0之间调节当然,你也可以自己添加lora文件点击后会显示你训练过的所有lora的所有轮次VAE不需要替换正向提示词输入你写的提示词可以选择基于这个提示词一次性生成几张图选择生成图片的尺寸,横板、竖版、正方形采样器和调度器新手小白可以默认这个不换迭代步数可以按照需求在20-30之间调整CFG可以按照需求在3.5-7.5之间调整随机种子-1代表随机生成图所有设置都好了以后,点击开始生态,生成的图会显示在右侧如果有哪次生成结果你觉得很不错,想要微调或者高分辨率修复,可以点开那张图往下滑,划到随机种子,复制下来粘贴到i机种子这里,这样下次生成的图就会和这次的结果近似如果确认了一张很合适的种子和参数,想要搞清放大则点开高清修复,可以选择你想放大的倍数新手小白可以就默认这个算法迭代步数也是建议在20-30之间重回幅度根据需求调整,正常来说在0.3-0.7之间调整[heading1]今日作业[content]按照比赛要求,收集六个主题中一个主题的素材并且训练出lora模型后提交lora模型与案例图像提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09
我想找一个可以把服装图片用ai的方式直接‘穿’在另一张图片的模特身上
以下是两种可以将服装图片用 AI 的方式“穿”在另一张图片的模特身上的方法: 方法一:使用 ComfyUI GeminiAPI 1. 在 Google 的 AI Studio 申请一个 API key(需要网络环境),有免费的额度,网址为:https://aistudio.google.com/apikey?hl=zhcn 。 2. 安装相关依赖,根据使用的情况选择手动安装(如果使用 ComfyUI 便携版或自己的 Python 环境)或通过 ComfyUI Manager 安装。 手动安装:安装相关依赖。 通过 ComfyUI Manager 安装:在 ComfyUI 中安装并打开 ComfyUI Manager,在 Manager 中搜索“Gemini API”,然后点击安装按钮。 方法二:使用【SD】 1. 进行 SAM 模型分割:来到图生图中,提示词输入“蓝色毛衣”,蒙版区域内容处理改为“填充”,尺寸改为和图像一致,重绘幅度为 1。 2. 处理可能出现的问题:如蒙版区域较大导致的衔接问题,可以通过降低重绘幅度或添加一个 openpose 来控制人物的身体,得到正确的姿势。 3. 选择合适的重绘功能:除了使用图生图的局部重绘,还可以使用 controlnet 的局部重绘功能,控制模式选择“更注重提示词”,具体效果可自行试验选择。
2025-04-09
我想了解AI的应用方式
AI 的应用方式广泛且多样,主要包括以下几个方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发过程。 个性化医疗,提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,辅助贷款决策。 投资分析,帮助投资者做出明智决策。 客户服务,提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐,根据客户数据推荐感兴趣的产品。 搜索和个性化,改善搜索结果和提供个性化购物体验。 动态定价,根据市场需求调整产品价格。 聊天机器人,回答客户问题和解决问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 供应链管理,优化供应链提高效率和降低成本。 机器人自动化,控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶,提高交通安全性和效率。 交通管理,优化交通信号灯和流量缓解拥堵。 物流和配送,优化路线和配送计划降低运输成本。 无人机送货,将货物快速送达偏远地区。 6. 其他应用场景: 教育,提供个性化学习体验。 农业,分析农田数据提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用提高能源效率。 此外,还有众多具体的 AI 应用产品,如辅助创作与学习方面的 AI 智能写作助手、语言学习助手等;推荐与规划方面的图像识别商品推荐、旅游行程规划器等;监控与预警方面的宠物健康监测设备、家居安全监控系统等;优化与管理方面的办公自动化工具、物流路径优化工具等;销售与交易方面的艺术作品生成器、汽车销售平台等。总之,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2025-04-09
ai变现方式有哪些
以下是一些常见的 AI 变现方式: 1. 电商方面: 利用 AI 制作服装,如 AI 小绿裙,单价 239 卖了 1160 多份,几个月共卖 27 万。可使用 sd、mj 等工具制作,新手也可用 mewxai 或幻火。 用 AI 定制萌娃的头像,单价 19.9,卖了 2675 份,执行力强的一个月能有 2000 3000 的收入。 2. 摊位活动: 乐易科学院:通过 AI 技术结合多种能量形式从多方面讲解国学和传统文化,进行批八字、调风水、性格色彩分析等。 AIGC 策划程序美术(3AI 简称 3A 游戏)应用独立游戏开发。 AI 人像摄影绘画。 B2B AI 营销与 AI 落地项目快速落地,涵盖 AI 训练、美国独立站搭建、Google seo 与 AI 结合等,并开发了多种 AI 工具,如帮 HR 筛选简历的工具、行业新闻 AI 生成与自动推送的工作流、小红书 AI 生成的工具、Newsletter AI 生成的工具等。 3. 个人方面: 在公司给自己贴 AI 大神标签。 在社交网络进行分享,扩大影响力,承接项目开发。 二创方向,如增加画板节点,结合公司 Logo 生成一系列公司主题的产品邮票,承接类似需求,扩充工作流以适应更复杂的业务,修改提示词调整生图内容方向。
2025-04-09
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
想进入AI 这个赛道,有啥搞钱方式
以下是进入 AI 赛道的一些搞钱方式: 1. 参加“城市狂想”文旅短视频创意大赛: 该大赛由百度百家号主办,国内最大 AI 开源社区通往 AGI 之路协办,于 8 月 27 日正式开启。 无论个人、团体还是机构,AI 视频创作者或普通自媒体创作者,都可选择适合的分赛道参与,奖金池达 60000 元。 优质作品有机会获得单项 10000 元奖金及百+助推,还有机会获得地方政府/媒体扩圈传播,百度 APP 城市频道商业 banner 推荐。 针对零基础/技术欠缺的朋友,下周将在社区开设线上直播课程,由行业内顶尖的 AI 艺术家手把手教学如何制作 AI 文旅宣传片。 报名方式: 第一步,报名,填写右侧报名链接,本赛道为实名制,未报名作者不参与评奖。https://www.wjx.top/vm/w2oCF2q.aspx 第二步,投稿,在百家号创作者后台/百度 APP,带话题城市狂想发布符合活动要求的视频内容。(允许同一作者投稿多个参赛作品,或参与多部参赛作品制作。) 第三步,提交作品,填写右侧提交作品链接。https://www.wjx.top/vm/wvfqf2f.aspx 2. 运营 AI 创作账号: 变现方式:分为通过官方蒲公英平台接单和主流媒体约稿。蒲公英平台会收取 10%手续费,行业 AI 视频价格一分钟约 2.5 万到 4 万,主流媒体约稿稿费可能较低但有背书作用。 平台选择:推荐小红书和 B 站。小红书从种草平台逐渐变为知识社区,其知识属性适合 AI 创作者,视频号也值得做但经验分享较少。 内容形式:小红书能发视频就发视频,小红书的视频 UI 界面改版且推送机制变化,后续可能重点发力视频。 账号赛道:起号前期可用妖魔鬼怪类内容,但后期要扭转账号标签,此类账号变现方式窄,做账号要有价值,不能割韭菜,要把 AI 生态圈做大。 账号搭建与运营: 头像设计:要有记忆点和视觉冲击力,能让人记住。 名称选择:要独特,能体现个人或内容特点。 简介撰写:要有哲理或引人思考的话语,能吸引用户。 封面统一:要统一且具有账号属性,体现商业化。 追热点策略:账号初期应追热点,如对热门内容进行分析和跟风创作。 获取信任:做 IP 最终要赢得用户信任,用户信任能增强其对推荐内容的关注度。 3. 运营 AI 视频号: 保持日更:起号阶段至少两天一更,每天半小时就能完成 20 秒的简单内容制作,持续更新让平台看到创作者的诚意。 选择赛道:资讯类不做,选择 AI 视觉冲击力、利他的内容,有 AI 基础可做教程。 寻找对标:起号阶段要找 10 个对标的账号,参考其内容和模式。 克服心理:出镜做 IP,不要有容貌焦虑,长得丑或有特点都能有流量,要克服不敢出镜的心理。 蹭取热点:蹭经过平台验证有流量的热点,如黄油小熊,根据热点抄学制作,同时注意热点的舆论导向和合规性。 其他经验: 获取视频教程:可在 vtwoagi.com 网站的飞书知识库中获取 AI 视频创作教程。 应对抄袭方法:在抄袭者评论区留言指出,或找朋友点赞将评论顶上去,为自己账号引流。 特效视频长度:建议控制在 1 分钟内,不建议做费时费力的剧情或故事片。 账号限流处理:视频号限流建议重新起号,小红书限流可日更 10 天尝试。 内容商业价值:内容有商业价值的标准是甲方或品牌愿意投钱,如靠播放量或带货分成有收入。 封面获取渠道:可从堆友、吉梦、小红书等获取封面素材。 蹭取平台热点:做哪个平台就蹭哪个平台的热点。 寻找对标账号:在小红书创作者平台的成长榜样中可找到对标账号。 账号标签查看:在小红书创作者后台可查看账号是否被打上标签。 内容发布时间:8 点到 10 点、2 点到下午 5 点、7 点到 8 点较为合适。
2025-03-28
作为AI小白,如何开始学习AI?有哪些资源和方式推荐?
对于 AI 小白,以下是开始学习 AI 的建议和资源推荐: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,关于 AI 知识库使用及 AIPO 活动的介绍:讨论了 AI 知识库的使用情况、AIPO 活动的发起背景、内容安排及相关资源等。AIPO 线下活动及 AI 相关探讨:讨论了 AIPO 线下活动的规则和玩法,以及 AI 在科技发展中的重要地位和相关研究方向。way to AGI 社区活动与知识库介绍:讨论了 way to AGI 社区活动的安排、材料准备以及知识库的使用和相关内容更新等情况。 学习路径方面:有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。初学者入门推荐:推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。
2025-03-27