Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

文献阅读总结有推荐的工具吗

Answer

以下是为您推荐的文献阅读总结工具:

  1. 浏览器插件“沉浸式翻译”:
    • 地址:https://immersivetranslate.com/
    • 支持阅读本地 PDF 等,是实用的英文资料和网页翻译插件。
  2. 浏览器插件莫妮卡(Monica):
    • 地址:https://monica.im/
    • 集成了 GPT 的功能,可对网页文字进行翻译。
  3. 利用 GPT 辅助阅读:能从英译中到中译中,帮助理解文档内容。
  4. Afforai:
    • 是为研究人员设计的 AI 驱动的研究助手和聊天机器人。
    • 提供上传和管理研究论文、注释和笔记、管理引用和元数据等工具。
    • 支持多种文档格式和三种搜索模式。
  5. Recall:
    • 提供新型知识管理方法,能自动总结多种在线内容并保存到知识库。
    • 知识库自动组织和分类内容,通过知识图谱技术发现信息联系,还提供间隔重复学习功能。

此外,在学术场景中,GLM-4-Plus 结合良好的提示词可帮助快速总结、翻译和润色论文内容。例如:

  • 论文总结提示词:结合良好提示词能迅速总结概括文档。
  • 论文内容翻译提示词:结合良好提示词能快速翻译论文内容。
  • 论文内容扩写润色提示词:精心设计的提示词可根据特定场景调整,生成多样化润色结果,如针对小红书的口语化、轻松愉快风格。
Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:Prompt 喂饭级系列教程 小白学习指南(一)

到这一步,我知道有些朋友会说:“啊,好多原版全英文,阅读吃力”既然这是个喂饭级的教程,那么我再推荐3个英文阅读的工具/方法:1、浏览器插件“沉浸式翻译”地址:[双语网页翻译-电子书翻译-PDF翻译-字幕文件翻译浏览器扩展|沉浸式翻译(](https://immersivetranslate.com/)[immersivetranslate.com](http://immersivetranslate.com)[)](https://immersivetranslate.com/)它也支持阅读本地PDF之类的,是个非常实用的英文资料和网页翻译插件,推荐英文阅读吃力的小伙伴人手一个。使用之后你的英文页面会变成这样:2、浏览器插件莫妮卡[Monica-Your ChatGPT AI Assistant Chrome Extension](https://monica.im/)使用之后你的英文页面你随意刷住任意一段文字会出现这个,然后点击翻译:当然这个工具集成了GPT的功能,相当于网页版挂载了一个GPT+notion,很多场景下可以重写扩写什么的,但这里不是插件教程帖子,就不做展开了,感兴趣的小伙伴自己去查询官网了解它的更多用法。3、利用GPT辅助阅读:我知道你们会说翻译成中文我还是看不懂,那就让GPT进一步辅助阅读,这种方式的阅读体验不够连续,你要跨两个页面来回复制和对话,但是我更推荐这种方法,因为这样你能从英译中到中译中,真正看得进去文档在说什么。顺便:有多少同学不知道win键+V键可以调取你之前复制过的多个信息,这样会极大的优化你复制粘贴的效率,去试试(系统版本win10及以上):提示词:

AIGC Weekly #76

[Afforai:AI文献研究工具](https://afforai.com/)[content]Afforai是一个为研究人员设计的AI驱动的研究助手和聊天机器人,它提供了一系列工具来简化研究流程。用户可以通过Afforai Reference Manager上传和管理研究论文,使用Afforai Notebook对论文进行注释和笔记,以及利用Afforai Cite管理引用和元数据。该平台支持多种文档格式,并且提供了三种不同的搜索模式,包括文档检索模式、学术搜索模式和谷歌搜索模式,以帮助研究人员梳理和比较大量的文献。[heading2][content][Recall:AI驱动的内容收集工具](https://www.getrecall.ai/)[content]Recall提供了一种新型的知识管理方法,它能够自动总结用户在线遇到的各种内容,如播客、YouTube视频、新闻文章、PDF等,并将其保存到用户的知识库中。这个知识库不仅自动组织和分类内容,还通过知识图谱技术帮助用户发现信息之间的联系,从而更深入地理解复杂主题。此外,Recall还提供了间隔重复学习功能,帮助用户更好地学习和记忆。

学术场景数据处理:论文总结翻译润色

阅读完整篇文章之后需要花费大量时间总结和梳理文章内容,而大模型可以结合有效的提示词,迅速总结概括文档,从而节省时间。[heading3]论文总结提示词[content]GLM-4-Plus结合良好的提示词能够帮助学生快速总结论文内容,提高论文梳理的效率。[heading4]总结示例[content]论文内容总结结果示例:[heading3]论文内容翻译[content]学生在阅读文献时,由于语言差异,常常需要依赖翻译工具。然而,而且现在市面上的翻译软件由于字数限制不能直接对整篇文章进行处理,大模型可以弥补这一不足,帮你更快更好地理解原文,让你高效掌握论文核心内容。[heading4]论文内容翻译提示词[content]GLM结合良好的提示词能够帮助学生快速翻译论文内容,提高论文阅读效率。[heading4]翻译示例[content]翻译结果示例:[heading3]论文内容扩写润色[content]我们可以继续将论文内容转化为社交媒体的科普内容,将复杂学术知识普及化。这不仅仅是简单的翻译,而是需要将那些充满术语和专业词汇的学术语言,转换成普通大众能够轻松理解、并且感兴趣的表达方式。[heading4]论文总结内容润色提示词[content]精心设计的润色提示词可以根据特定场景进行调整,以便生成与特定平台风格相匹配的多样化润色结果。这里是针对小红书的使用场景,调整提示词以匹配其特有的口语化、轻松愉快的氛围,从而将论文中的结论部分润色成适合在小红书上分享的生活化内容。[heading4]润色示例(小红书科普)[content]通过精心设计的润色提示词,我们能够确定不同的润色风格,从而生成多样化的润色结果。在这里,我们将论文中的结论部分稍加润色,使之更易于在小红书上分享,转化为贴近生活的帖子,让复杂的学术知识以通俗易懂的方式呈现,吸引更多普通大众的关注和兴趣。论文中结果部分:润色后结果展示:

Others are asking
有论文大纲怎么ai生成一篇完整的论文且文献要真实
利用 AI 生成一篇完整且文献真实的论文,您可以参考以下步骤和建议: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎(如 Semantic Scholar)和文献管理软件(如 Zotero)来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具(如 Quillbot)来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具(如 Google Colab、Knitro)来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具(如 Grammarly)来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具(如 Turnitin、Crossref Similarity Check)来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。 在论文写作领域,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用这些工具时,重要的是要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-04-13
ai生成文献综述引言的指令
以下是关于利用 AI 生成文献综述引言的一些指导: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述引言:利用 AI 工具来帮助撰写引言部分,确保内容的准确性和完整性。但需注意,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行写作时,应保持批判性思维,并确保研究的质量和学术诚信。 例如,像“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。”这样的需求,可让 AI 辅助生成。 每次生成后,您还可以通过向提示栏添加更多说明,然后按 Enter 键,以便 AI 根据您的后续说明重新生成,从而进一步优化提示。默认情况下,除了您包含的手动之外,Cursor 还将尝试查找不同类型的有用信息来改进代码生成。其他上下文可能包括相关文件、最近查看的文件等。收集后,Cursor 按与编辑/生成的相关性对上下文项进行排名,并将排名靠前的项目保留在大型语言模型的上下文中。
2025-04-10
已有30多篇参考文献,如何用AI写综述论文
利用 AI 写综述论文可以参考以下步骤: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成综述论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写综述论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查综述论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保综述论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行综述论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-04-10
论文参考文献自动生成的免费工具,请提供具体下载网址
以下是一些可以自动生成论文参考文献的免费工具及相关信息: 1. 文献管理和搜索: Zotero:结合 AI 技术,能够自动提取文献信息,有助于您管理和整理参考文献。 Semantic Scholar:这是一个由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术为您提供文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,能帮助您精简和优化论文内容。 需要注意的是,这些内容由 AI 大模型生成,请您仔细甄别。您可以通过以下网址获取这些工具: Zotero:https://www.zotero.org/ Semantic Scholar:https://www.semanticscholar.org/ Grammarly:https://www.grammarly.com/ Quillbot:https://quillbot.com/
2025-04-09
最好的AI学术文献搜索软件?
以下是一些较好的 AI 学术文献搜索软件: 1. Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 2. Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 此外,在论文写作和课题研究中,还可以利用其他 AI 工具辅助,如: 1. 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议;Quillbot 可进行重写和摘要。 2. 数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化;Knitro 用于数学建模和优化。 在教学中,Claude 和 Gamma.app 这两个工具可以帮助学生做好组会准备,如快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。使用 Claude 时,可以通过对话解决如学术网站条件搜索等问题。
2025-04-01
我是一名日语大四学生,我要利用我的开题报告和文献综述结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
向 DeepSeek 提问时,可遵循以下万能通用的提问公式:提示词=赋予角色+背景/现状+目标/需求+补充要求。 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,以使它更好地理解您的问题,并为您提供更准确的答案。例如您是日语大四学生,正在进行开题报告和文献综述相关工作。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如完成一篇结合开题报告和文献综述的论文初稿。 4. 补充要求:例如指定写作风格要具有吸引力、友好性和幽默感等。 另外,在使用 DeepSeek 时还需注意: 对于像“仅通过东方集团的历年公开财务数据,分析这家公司的潜在投资机会和风险”这样的特定需求,可能需要进一步追问以获得更满意的结果。 与 DeepSeek 交流时,在其提供方法建议后,可以追问背后的方法论。 对于创作类的需求,如脱口秀段子,可以结合特定人物的特点和风格,并指定主题和字数等要求。
2025-03-31
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
音频总结的AI有哪些
以下是一些关于音频总结的 AI 相关内容: 在智能纪要方面,AI 音乐创作通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区。数字人语音合成介绍了声音克隆技术,常用的是 JPT service。 总结类 AI 工具方面,如 BibiGPT·AI 音视频内容一键总结(https://b.jimmylv.cn/)、15 个值得一试的 YouTube 视频摘要 AI 工具(https://nealschaffer.com/youtubevideosummarizerai/)、summarize.tech:AIpowered video summaries(https://www.summarize.tech/)。 在生成式 AI 季度数据报告中,会议总结赛道可能因远程工作和在线会议普及而需求增加,Otter AI 作为领先产品保持稳定增长。其中 2023 年 4 月到 2024 年 3 月,赛道月访问总量有变化,如 2023 年 4 月约 1314.6 万,2024 年 3 月增至 2146.3 万。同时还有相关的榜单数据,如 23 年 4 月访问量 Top10 等。
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
我现在想做一个总结我每日复盘的智能体
以下是关于创建总结每日复盘智能体的相关信息: 智普工作流功能及创建流程: 新用户资源包:新用户有 1 元及 5 元的资源包可供购买,能满足使用需求。 工作流功能:具备文章、文件、网页总结,生成图片、视频和文字版日报等功能,通过意图识别跳转节点,使用多个 agent。 工作流创建:在控制台的自动体中心,右键创建智能体,可选择对话型或文本型,对话型多用于多 agent 协作等场景,创建后在空旷画布的左下角添加节点,节点包括 agent、LM、工具、代码、数据提取、分支判断和问答等,agent 通过跳入跳出条件与其他节点交互,LM 通过工作流连线执行功能。 文档获取:文档可在 vtoagi.com 首页的 banner 获取,飞书群也可获取。 版本选择:接入微信时,有云服务器和本地电脑两种版本,可按需选择。 关于姿谱清流工作流及模型配置的讨论: 工作流节点与 agent:工作流中节点和 agent 的连接方式,agent 具有意图识别和跳出条件,可实现任务跳转,所有 agent 平级可互相跳转。 文本存储问题:姿谱清流本身无存储功能,需依靠其他笔记工具存储执行完的文本。 模型配置与调试:介绍了姿谱清流中角色扮演模型的配置方法,包括角色名称、背景、人格等设置,以及单节点调试功能和用户配置。 意图识别与冲突:意图配置冲突可能导致识别错误和乱跳,识别准确率相对较准。 多智能体的记忆:多智能体之间存在记忆,后续会讲到相关参数的使用。 在 cos 主页有新手教程文档,可据此构建智能体。工作流偏向节点调用,可通过 prompt 构建提示词并优化。还能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。
2025-04-10
我想寻找一个AI模型,能快速读懂视频,并总结成为知识架构的应用或网站
以下为您推荐能快速读懂视频并总结成为知识架构的应用或网站: 百炼大模型平台:其影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,可生成爆款文案,还能根据偏好调试提示词。2025 年 1 月 9 号更新的模型可通过 API 调用纹身 AI 等,Windows 用户可在左下角开始运行输入命令提示符进行本地调用,但生成过程较缓慢。 应用场景:包括商品信息图片生成淘宝上架规格参数、智能手表文案生成、社交媒体内容生成、合同提取、拍照搜题、图片转换、模特换装等。 提供 AI 硬件底层能力,AI 拍立得相机拍照可快速成诗并打印,其对接多模态能力可通过智能体应用或工作流形式的 API 调用。 开源使用:有开源地址,可下载到本地,配置阿里云百炼平台的 API key 及 appid 实现场景,运行项目需特定 Python 包和依赖,可新建应用获取 appid,拍照时需设置 API key。 此外,关于 AI 技术原理与框架的相关知识: 生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不属于大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-04-09
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
根据简历,模拟面试的工具
以下是一些根据简历进行模拟面试的工具: 1. Kimi 新出的常用语功能中有“【🎤面试模拟】”,它可以作为私人面试 mock 伙伴,根据简历信息和求职岗位进行模拟面试。 2. 通过让 ChatGPT 接入 Siri 可以模拟前端电话面试。具体操作是首先按照特定文章接入,然后在手机上唤起 ChatGPT 版本的 Siri 并设定身份和对话目的,如让其作为一位来面试的前端高级开发工程师,接着依次提问。 3. ChatGPT 可以更高效地辅助复习面试,您可以把问题给到 ChatGPT 让它帮您生成答案,并展示 demo 和解释,帮助您更好地掌握知识。相关文档在线地址:https://xzfeinterview.gitbook.io/feinterview/readme
2025-04-18
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
那些ai工具可以world转pdf
以下是一些可以将 Word 转换为 PDF 的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 内容由 AI 大模型生成,请仔细甄别。
2025-04-15
作图的ai工具
以下是一些常见的作图 AI 工具: 绘制软件架构视图(逻辑视图、功能视图、部署视图)的工具: Lucidchart:流行的在线绘图工具,支持多种图表创建,有拖放界面方便创建架构图。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板。 draw.io(diagrams.net):免费在线图表软件,支持多种视图创建。 PlantUML:文本到 UML 转换工具,可通过描述文本生成逻辑视图相关图表。 Gliffy:基于云的绘图工具,支持创建架构图。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型。 Rational Rose:IBM 的 UML 工具,支持逻辑视图和部署视图创建。 绘制 CAD 图的工具: CADtools 12:Adobe Illustrator 插件,添加绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,帮助创建复杂 CAD 模型。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,自动生成 3D 模型。 主流 CAD 软件(如 Autodesk 系列、SolidWorks 等)中的生成设计工具。 此外,Controlnet 的作者 lllyasviel(张吕敏)在 Github 上发布了全新的开源 AI 绘画工具 Fooocus,可像 Stable diffusion WebUI 一样部署到本地免费使用,且有类似 midjourney 的便捷操作界面。
2025-04-15
装修设计可以使用哪些AI工具
以下是一些可用于装修设计的 AI 工具: 1. 酷家乐装修设计软件:利用图像生成和机器学习技术,为用户提供装修设计方案,用户可根据喜好选择和调整。 2. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 3. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 4. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 5. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 6. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入自动产生多种设计方案。 7. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 8. Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入自动生成户型图。 9. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期引入标准和规范约束生成的设计结果。 10. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内信息集成,实现数据汇总与管理。 但每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-04-15
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
有哪些论文阅读助手相关的预置提示词
以下是一些论文阅读助手相关的预置提示词: 论文内容总结方面:GLM4Plus 结合良好的提示词能够帮助学生快速总结论文内容,提高梳理效率。例如:阅读完整篇文章之后需要花费大量时间总结和梳理文章内容,而大模型可以结合有效的提示词,迅速总结概括文档,从而节省时间。 论文内容翻译方面:GLM 结合良好的提示词能够帮助学生快速翻译论文内容,提高论文阅读效率。 论文内容扩写润色方面:精心设计的润色提示词可以根据特定场景进行调整,以便生成与特定平台风格相匹配的多样化润色结果。比如针对小红书的使用场景,调整提示词以匹配其特有的口语化、轻松愉快的氛围,从而将论文中的结论部分润色成适合在小红书上分享的生活化内容。 此外,还有以下相关提示词: Claude2 中文精读方面:零提示生成直接引用,如提示以获取相关引语。文档摘要或文本+直接引语通常能使答案更准确。 小七姐的教程中提到:比如让 AI 帮阅读文档时,可以写如“于是这个提示词解决了你自己,和任何收到你 Prompt 的人微调几个关键信息就能自动让 GPT 或者 Kimi 帮你阅读一篇论文而且生成不错的总结啦!”的提示词。还可以选择如“情境:”这样的基础提示词框架入手。
2025-04-08
AI阅读习惯养成APP
以下是为您提供的关于 AI 阅读习惯养成的相关内容: AI 稍后读助手的设计思路: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看,提高可访问性。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成合适的阅读计划。 同在字节生态中的 Coze、飞书、飞书多维表格可以构建完整的 AI 工作流:通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出;由 Coze 调用大模型、插件完成内容整理和推荐;利用飞书多维表格存储和管理稍后读数据,无需开发插件和 APP 即可实现跨平台的稍后读收集与智能阅读计划推荐。 关于 DeepSeek R1 的纯强化学习: DeepSeek R1 引入纯强化学习(RL),不依赖大量人类标注数据,通过自我探索和试错学习。在“冷启动”阶段,通过少量人工精选的思维链数据初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统反馈下(对结果准确率与回答格式进行奖励)自主探索推理策略,不断提升回答准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。如 Alpha Zero 只训练三天就完胜 Alpha Go Lee,Alpha Go 结合监督学习和强化学习,受人类局限,Alpha Zero 纯强化学习,具有创造性风格。大模型 AI 在纯强化学习下展现出超出想象的成长潜力,DeepSeek R1 更注重学习推理底层策略,培养通用推理能力,实现跨领域知识迁移运用和推理解答。
2025-03-28
基于AI技术的阅读、裁剪、分析、笔记的软件有哪些。
以下是一些基于 AI 技术的阅读、裁剪、分析、笔记的软件: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,能精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 笔记相关: Obsidian:可搭配浏览器剪藏插件,一些 AI 插件能实现内置助手功能,如检索笔记、基于笔记生成新内容等。 Cursor:能帮助用模糊问题检索笔记库,基于笔记库进行研究,生成和修改笔记。 使用这些软件时,应结合自身写作风格和需求,选择最合适的辅助工具。需注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-03-28
ai 阅读器
以下是为您整理的关于 AI 阅读器的相关信息: 360AI 浏览器 作为“阅读器”,早期以新闻资讯为主,如今随着专业长文和视频增加,用户浏览消耗时间逐渐增加,浏览提效需求迫切。 功能 1:看长视频,敲黑板划重点。能帮用户观看 B 站的字幕视频,短短几秒总结概要生成脑图,告知重点和高潮剧情,还能对英文字幕进行翻译,通过 AI 助手对话就视频内容进行追问和扩展提问。 功能 2:阅读国内外长论文和著作,自动翻译自动提炼,3 分钟获取要点。支持 360k 长文本阅读,以《三体》为例,可呈现完整故事框架并生成思维导图。 官网地址:ai.se.360.cn 智谱●智谱清流 专为企业 AI 应用落地打造的 AI 智能体开发平台,提供 Agents、Workflow、知识管理、批量效果调优等能力,支持 API、SDK、URL 三种集成方式。 网址:https://bigmodel.cn/agent 会读 ReadFlow X 知我 AI 会读 ReadFlow 是一款 AI 阅读工具,核心功能是通过微信对话发送文章链接,直接生成摘要,后续增加了小报、归档、标签等新功能。会读用户已迁移至同类型产品知我 AI。 知我 AI 网址:https://knowme.xiaoduoai.com ReadAgent 由 Google 开发的阅读代理,模仿人类阅读方式处理长文本,采用忘记具体信息但保留要点的策略提高理解效率。 网址:https://readagent.github.io
2025-03-24
1. 利用AI完成技术论文的学习阅读; 2. 结合相关知识体系解读论文,并制作成学习分享PPT。
以下是关于利用 AI 完成技术论文的学习阅读,并结合相关知识体系解读论文制作学习分享 PPT 的一些建议: 在技术论文学习阅读方面: 可以借助 AI 工具,如 Claude 和 Gamma.app。Claude 能够帮助快速寻找符合条件的论文、提取精炼论文中某部分信息。 对于复杂推理,可以利用思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 检索增强生成(RAG)能将外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 程序辅助语言模型(PAL)在 2022 年的论文中被提出,对于语言模型的计算问题,可借助其他工具如 Python 解释器作为计算工具。 ReAct 框架于 2022 年在《React:在语言模型中协同推理与行动》的论文中提出,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,可借助 LangChain 等框架简化构建流程。 在制作学习分享 PPT 方面: 可以先对论文进行深入理解,提取关键信息,包括摘要描述、研究问题、基本假设、实验方法、实验结论、文章主要结论、研究展望等。 利用 AI 工具获取相关理论的简单介绍。 了解并使用合适的 PPT 制作工具,如 Gamma.app。 需要注意的是,小白直接看技术论文有难度,需要一定的知识储备。同时,Transformer 是仿生算法的阶段性实现,未来 10 年、20 年可能不再被使用。
2025-03-24