以下是为普通人学习 AI 知识提供的一些建议:
问ai【一个(xxx职业)需要具备哪些知识?】,ai就可给出知识框架,然后根据知识框架每一个小点去问,就能让ai工具帮你指数级深度思考啦~[heading2]2.通往AGI之路[content][通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)优质信息源在哪?问渠哪得清如许,唯有源头活水来。好的内容,主要源于好的信息源。那么,像我这样的没有技术背景的普通人,想要学习或了解AI,最好的信息源在哪里呢?1.要点:信息渠道、质量、密度三者皆优即可;2.先说结论:“不在西装革履的卖课海报里,免费的,不需要520”,就在「即刻」App的“[AI探索站](https://m.okjike.com/topics/63579abb6724cc583b9bba9a)”等免费圈子里。“AI探索站”里的前沿信息线索基本够用,很多Twitter上的开发者大牛也会在这里分享,需要溯源的时候,我才会去Twitter和相关官网。3.信息爆炸之做减法的小tips:如果担心信息洪流太大,学不过来,可以尝试这5个技巧3.1.只掌握最好的产品,少关注新产品测评(除非远超ChatGPT)3.2.只解决具体问题,不做泛泛了解。从问题中来,到问题中去3.3.只关注核心能力,不关注花式玩法,用AI扬其长避其短3.4.只关注理清需求和逻辑,不死记硬背提示词3.5.先关注提升认知/洞察,然后再谈技巧
市场调研->观察目标群体工作流->创造并拆解需求->选型现有AI解决方案做成产品来解决需求->抽象出来集成为一个互联网APP产品->写PRD->画APP产品原型图->组织团队进行APP产品开发。公司招这个岗位,不会多招其他懂AI的岗位了,所以你等于是需要有比较综合的个人能力,敏捷的产品嗅觉,需求走在用户前面,敢想敢做,这也不是谁都能做得来的,有些人可能内向,可能不善于表达想法,可能只想默默地写代码,我接触过太多这样的程序员了…[heading3]1、零基础小白怎么学?[content]如果你现在真的是0基础小白,推荐你去找找网上的教程,虽然是新领域吧…但是基础课程还是蛮多的,为什么这么说呢,因为AIGC这种不稳定不确定的业务流里面,真正第一波赚钱的是哪些人?不是做应用的吧,卖课的。不过我还是推荐你看一些科普类教程,比如我前几天看到的这个视频做的不错:还有OpenAI的文档也过一下,理解一下每个参数都有哪些作用,为什么要这样设计,不至于面试官一问就触及的知识盲区和认知上限了。推荐有阅读能力的还是读一读官方文档吧,毕竟外面做教程的都有时效性,第二天OpenAI就更新文档,旧的教程就可能废弃了。推荐一些练手的Prompt工具:一些相关教程文档:
开发这些具有潜在空间层次结构的堆叠AI模型——复杂数据的简化地图,以帮助AI模型理解模式和关系——将反映对每个基本元素的理解或预测能力。我相信,这最初可能会平行于人类教育和教育范例,但随着时间的推移,它可能会专门发展,以在AI学习中培养新型的专业知识。这些堆叠模型可能会以与人脑皮层类似的方式发展。但是,与人类拥有视觉皮层和运动皮层不同,AI可能会拥有生物皮层和药物设计皮层——在这两种情况下,都是针对特定任务专门设计的神经架构。具有讽刺意味的是,创建专门从事诸如医疗保健这样的特定领域的AI可能比创建更接近HAL 9000的东西——具有跨领域的典型人类水平知识——更容易。实际上,我们更需要特定领域的专家AI,而不是一个能做任何普通人能做的事情的全能AI。我预计不仅会创造一个专家AI,而且会创造许多专家AI,它们在编码、数据和测试方面采用多样化的方法,以便在需要时这些模型可以提供第二个(或第三个、第四个)意见。同时,我们必须将AI从其在线基础上摘下,并将其投入到原子的世界中。我们应该让我们最熟练的人类专家配备可穿戴设备,以收集微妙的、现实世界的互动,供AI学习,就像我们即将崭露头角的学术和行业明星一样。解决健康和医学领域最复杂和不确定的问题在位元的世界中根本不存在。必须让这些专家AI接触到顶级从业人员的多样化视角,以避免复制危险的偏见。但AI的黑盒性远不如大众想象中的那么强;我们今天依赖的人类决策,正如我以前[指出的](https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html),可以说更加不透明。我们不能因为对传播人类偏见的恐惧而限制我们探索AI如何帮助我们民主化我们的人类专家知识的意愿,而这些专家是不幸地无法扩展的。