Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

lm studio怎么样

Answer

LM Studio 是一个可以在本地运行语言模型的应用。用户能够从 HuggingFace 下载如 Llama、MPT 等任何兼容的模型文件,然后通过应用内聊天界面或兼容 OpenAI 的本地服务器与模型进行交互。所有数据和对话都保存在本地电脑中,不会上传到任何服务器。

Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC Weekly #48

它是一个Python库,用于在多个端点之间分配API请求(支持OpenAI和Azure)。它实现了轮询负载平衡机制,并包括每个API调用的指数回退。它支持OpenAI的ChatCompletion、Embedding和Completion功能。特点包括:轮询负载平衡、指数回退重试、故障检测、灵活的配置、易于集成、回退支持。它很简单就可以集成到使用OpenAI API的项目中。通过配置端点、失败阈值、冷却期间和更多设置进行自定义。它还提供了OpenAI模型到Azure引擎的映射,以在OpenAI和Azure之间切换。[heading2][content][LM Studio:发现、下载和运行本地LLM](https://lmstudio.ai/)[content]LM Studio是一个可以在本地运行语言模型的应用,用户可以从HuggingFace下载任何兼容的模型文件,如Llama、MPT等,然后通过应用内聊天界面或兼容OpenAI的本地服务器与模型交互,所有数据和对话都保存在本地电脑中,不会上传到任何服务器。[heading2][Musicfy voice to music:从声音变成乐器的音乐](https://music[content]讲你哼唱的任何声音变成任何乐器发出的音乐。网站还提供将文字生成音乐和音乐编辑器等功能。

9. 生成式 AI Studio 简介

04:13而且……您可以看到该模型输出了一个有用的项目列表,我们不想在没有这些项目的情况下露营。这种编写单个命令的方法使LLM可以采用某种行为,04:23称为零镜头提示。通常,您可以使用3种方法以您想要的方式塑造模型的响应。零样本提示-是一种方法,在这种方法中,LLM没有得到关于特定的额外数据04:35它被要求执行的任务。相反,它只会给出描述任务的提示。比如你想让LLM回答一个问题,你只要提示“what is prompt04:46设计?”。一次性提示-是一种方法,其中LLM被要求执行任务的单个示例。例如,如果您希望LLM写一首诗,您可以提供一个示例04:58诗。Few-shot prompting-是一种方法,其中LLM被要求执行任务的少量示例。比如你想让LLM写一篇新闻文章,你可能给它几个新闻05:11文章阅读。您可以使用结构化模式通过为模型提供上下文和其他示例来设计小样本提示。结构化提示包含几个不同的组件:05:24首先我们有上下文,它指示模型应该如何响应。您可以指定模型可以或不能使用的词、要关注或避免的主题,或者特定的05:33响应格式。每次您向模型发送请求时,上下文都会应用。假设我们想使用LLM来回答基于一些背景文本的问题。05:42在这种情况下,描述亚马逊热带雨林植被变化的段落。我们可以粘贴背景文本作为上下文。然后,我们添加一些可以从这篇文章中回答的问题示例05:55比如LGM代表什么?或者沉积物沉积物的分析表明了什么?我们需要添加这些问题的相应答案,以展示我们如何06:05想要模型做出回应。然后,我们可以通过发送一个新问题作为输入来测试我们设计的提示。到此为止,您已经基于背景文本制作了一个问答系统的原型

9. 生成式 AI Studio 简介

12:29即使您确实为您的用例发现了一个好的提示,您可能会注意到模型响应的质量并不完全一致。为了缓解这些问题,我们可以做的一件事是调整模型。12:40那么调音是什么?好吧,您可能熟悉的一个版本是微调。在这种情况下,我们采用在通用数据集上预训练的模型。我们复制了这个模型。12:51然后,以这些学习到的权重为起点,我们在新的特定领域数据集上重新训练模型。这种技术对于许多不同的用例都非常有效。13:01但是当我们尝试微调LLM时,我们遇到了一些挑战。顾名思义,法学硕士是大型的。因此更新每个权重可能需要很长时间的训练工作。13:12将所有这些计算与现在必须为这个巨大模型提供服务的麻烦和成本相结合……因此,微调大型语言模型可能不是您的最佳选择。13:21但是有一种创新的调优方法称为参数有效调优。这是一个非常令人兴奋的研究领域,旨在通过仅训练一部分参数来减少微调LLM的挑战。13:34这些参数可能是现有模型参数的子集。或者它们可以是一组全新的参数。例如,也许您向模型添加了一些额外的层或额外的嵌入13:45到提示。如果您想了解更多关于参数有效调整和一些不同方法的信息,本课程的阅读列表中包含一篇摘要论文。13:53但如果您只想着手构建,那么让我们转到Generative AI Studio,看看如何开始调优工作。从Generative AI Studio的语言部分,14:02选择调整。为了创建一个调整模型,我们提供了一个名称。然后指向训练数据的本地或Cloud Storage位置。参数有效调整非常适合您拥有“适度”数量的场景14:14训练数据,例如数百或数千个训练示例。您的训练数据应以文本到文本格式构建为受监督的训练数据集。数据中的每条记录或行都将包含输入文本,换句话说,提示,

Others are asking
LLM应用可观测性
LLM 应用的可观测性主要体现在以下方面: LangChain:借助 LangSmith 提供更好的日志、可视化、播放和跟踪功能,以便监控和调试 LLM 应用。LangSmith 是基于 Web 的工具,能查看和分析细化到 class 的输入和输出,还提供跟踪功能,用于记录和展示 LLM 应用的执行过程和状态,以及 LLM 的内部信息和统计数据。 Langfuse:为大模型应用提供开源可观测性和分析功能,在可视化界面中可探索和调试复杂的日志和追踪,并使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 此外,微软(中国)的《面向大模型的新编程范式》报告中也强调了在线监控和可观测性的重要性。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
除了LLM,就没有AI模型了吗?
除了 LLM ,还有很多其他类型的 AI 模型。以下为您详细介绍: 1. 生成式 AI:可以生成文本、图片、音频、视频等内容形式。其中生成图像的扩散模型就不是大语言模型。 2. 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 3. 深度学习:一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。 4. 谷歌的 BERT 模型:可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。生成式 AI 生成的内容,叫做 AIGC 。
2025-04-11
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27
anythingLLM本地部署
以下是关于本地部署大模型以及搭建个人知识库的相关内容: 一、引言 作者是大圣,一个致力于使用 AI 工具将自己打造为超级个体的程序员,目前沉浸于 AI Agent 研究。本文将分享如何部署本地大模型及搭建个人知识库,读完可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 信息流转、RAG 概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。 五、本地知识库进阶 如果想要对知识库进行更灵活掌控,需要额外软件 AnythingLLM,它包含所有 Open WebUI 能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离。 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式,提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档数据给出答案)。 配置完成后可进行测试对话。 六、写在最后 作者推崇“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系作者或加其免费知识星球(备注 AGI 知识库)。 本文思路来源于视频号博主黄益贺,作者按照其视频进行实操并附加了一些关于 RAG 的额外知识。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25
DEEP SEEK 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)
以下是关于 Deep Seek 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)的相关内容: 一、使用 Docker + RAGFlow + Ollama 搭建个人/企业知识库 1. 将 Ollama 部署的模型接入 GARFlow 返回 RAGFlow 中,打开右上角设置,进入模型提供商,配置 Ollama 相关信息,基础 URL 按要求设置,设置完成后点击确定。 导入一个 embedding 模型用于文本向量化,导入成功后设置系统模型设置,然后返回知识库创建知识库。 进入数据集,导入文件(可设置文件夹当作知识库),导入完毕后解析文件,解析速度取决于本机 GPU 性能,解析好后进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。 2. 使用 Ollama 本地部署 DeepSeek 模型 先下载 Ollama 程序,官方网址:https://ollama.com/ 。 下载默认到 C 盘(一般为固态盘,运行速度快),若想修改安装目录到 D 盘,后续会有说明。 下载完右下角会出现 Ollama 图标,打开命令行输入相关命令回车。 若显卡是英伟达 2060Super,可选择 Deepseekr1:14b 的模型,根据自身独立显卡性能下载。 下载速度慢可按 Ctrl+C 强制退出重新下载。 下载完毕后再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相关命令,下载好后直接退出终端。 二、Flowith 相关报道、采访、使用指南 |标题|发布账号|社媒来源|日期|链接| |||||| |ChatGPT 的对话框过时了?这款 AI 产品提供了一种很新的聊天方式|爱范儿|公众号|2024/04/29|| |Flowith:革新你的工作方式,体验节点式 AI 的超流畅生产力|程序那些事儿|公众号|2024/05/03|| |体验 Flowith:探索人机交互从传统聊天对话到画布式知识管理的转变|AI 兔子洞|公众号|2024/04/22|| |deepseek 服务器繁忙?硅基流不动?看看这篇,内含 18 个平台,可能是最全的 deepseek 方案。|佐佐的 AI 笔记|公众号|2025/02/06|| |满血版自部署 DeepSeekR1+知识库+联网搜索,体验下来可能就只剩下这家了!|字节笔记本|公众号|2025/02/12|| |DeepSeek 让 AI 圈卷出了新高度:Flowith 宣布 DeepSeek R1 现在免费提供!|字节笔记本|公众号|2025/01/27|| |ShowMeAI 周刊 No.15|上周最有讨论度的 6 个 AI 话题:自由画布类产品密集更新、多主体一致成发展趋势、AGI、开源…|ShowMeAI 研究中心|公众号|2025/01/21||
2025-04-10
@ 在cherry studio可以是你openrouter的API吗?
在 Cherry Studio 中,不能直接将 @ 作为 OpenRouter 的 API。OpenRouter 有一些特定的使用方式和条件。 例如,Zeabur 模版自带 oneapi,支持一键部署。但想要同时使用 openrouter 和 simpleoneapi 需安装 cline 插件,将 openrouter api 放到 cline,再把 Cursor 设置换成 simpleoneapi,这样基本能在 Cursor 里使用全系大模型。 OpenRouter 新发布了 BYOK(Bring Your Own API Keys)功能,这是个第三方 Key 集成功能,能将 xAI、OpenAI、Mistral 等数十个平台的 Key 集中在一起,还能同时使用其他平台和 OpenRouter 的额度。目前支持白“赚”的平台包括 AI Studio/Cohere/DeepSeek/Mistral/SambaNova/Together/xAI 等。 在使用 OpenRouter 集成 API Key 时,不仅能整合免费额度,还能解放更多槽位。但在 Cursor 的设置里,deepseek 会与 gpt 的配置发生冲突,同一时间最多只能使用 4 个类型的模型。 如果觉得 OpenRouter 支持的模型不够,还可以使用 simpleoneapi。不过 simpleoneapi 不像 openrouter 支持直接在线配置多个 Key,熟悉代码的可以通过本地或者 Docker 启动。 另外,在进行相关实验时,需要准备本地安装好的 VS Code,在 VS Code 中安装 Cline(MCP 客户端之一),还需要注册 Cloudflare 和 Openrouter,在 Openrouter 注册后在 Keys 中申请一个 API key 并妥善保存。
2025-03-24
cherry studio中助手如何使用
以下是关于在不同场景中使用助手的方法: 在 Cherry Studio 中使用助手 1. 创建大模型问答应用 进入百炼控制台的,在页面右侧点击新增应用。在对话框,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以选择输入一些 Prompt,比如设置一些人设以引导大模型更好的应对客户咨询。 在页面右侧可以提问验证模型效果。不过您会发现,目前它还无法准确回答你们公司的商品信息。点击右上角的发布。 2. 获取调用 API 所需的凭证 在我的应用>应用列表中可以查看所有百炼应用 ID。保存应用 ID 到本地用于后续配置。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面。在页面右侧,点击创建我的 APIKEY,在弹出窗口中创建一个新 APIKEY。保存 APIKEY 到本地用于后续配置。 在 Stable Diffusion 中使用 Civitai 助手 您可以去 C 站搜索下载 Civitai 助手,如果上不了 C 站可以去我的百度云盘里下载,然后放在“……\\sdwebuiakiv4\\extensions”路径文件夹下。安装完成后,重启 webUI,就可以在上方的标签选项卡中找到这个插件。 Civitai 助手的功能包括: 1. 下载预览图:它可以自动扫描您的所有文件,如果模型是从 C 站下载的,会帮您自动匹配好缩略图。对于其他来源的模型,可能无法匹配成功,需要手动添加。点击刷新旁边的按钮,再把鼠标放在模型的名字上,可以看见新的四个图标,分别是用当前生成图替换为预览图、在新标签页打开这个模型的 Civitai 页面、一键添加这个模型的触发词到关键词输入框、一键使用这个模型预览图所使用的关键词。 2. 下载文件:当您看到 C 站上喜欢的模型,只需要将网址粘贴进来,点击“从 Civitai 链接拉取模型信息”,等拉取完之后,选择要放置的文件夹和模型的版本,点击下载即可,下载完之后预览图也会自动配好。 3. 检查更新:模型和 lora 的更新迭代很快,点击这个按钮可以自动检索您电脑上目前的模型有没有更新的版本。 在 Trae 中指定上下文进行 AI 对话 通过File,您可以将指定文件中的所有内容作为与 AI 助手对话的上下文。列表中默认展示近期在编辑器中打开过的文件。您可以预览这些文件所在的目录,以免因存在同名文件而导致错选。若展示的文件非您所需,您可以通过关键词搜索所需文件。 1. 在输入框中输入,或直接点击输入框左下角的引用按钮。 2. 输入框上方显示上下文类型选择列表。 3. 在列表中选择 File(或在符号后手动输入 File),然后按下回车键。 4. 列表展示近期在编辑器中打开过的文件。将鼠标悬浮在列表中的某个条目后,左侧会展示该文件所在的目录。 5. 若推荐的文件非您所需,在File:后输入您想要的文件的名称或关键词。 6. 从列表中选择需指定为上下文的文件。 7. 在输入框的文件标识后,输入您的问题并发送。
2025-03-20
LM Studio
LM Studio 是一种本地应用程序,可用于在个人电脑上运行和部署较小的开源模型。例如,对于 DeepSeek、Llama 等开源模型,除了可以使用 Together AI 等推理服务提供商在线体验和调用,还能通过 LM Studio 进行本地操作。
2025-03-19
Google AI Studio 怎么下载?
要下载 Google AI Studio,您可以按照以下步骤进行操作: 1. 打开浏览器,访问 https://aistudio.google.com/prompts/new_chat 。 2. 登录您的 Google 账户。 3. 在 model 选项处选择 Gemini 2.0 Flash Experimental 模型即可。 或者您也可以通过下载 Gemini 应用(Android 或 iOS)来使用。
2025-03-18
我想让cursor帮我编程一个能在Android studio编译的Android应用,它的主要功能是接受esp32通过websocket协议发送过来的opus数据,保存opus并把数据转换成wav,再使用sherpa-onnx语音识别成文字。我该使用什么提示词让cursor帮我写出这个Android应用?
很抱歉,目前没有适用于让 Cursor 生成您所需 Android 应用的特定提示词。编写这样一个复杂的 Android 应用需要对 Android 开发、网络通信、音频处理和语音识别等多个领域有深入的了解和专业知识。您可能需要逐步向 Cursor 描述应用的架构、各个模块的功能和实现逻辑,例如先描述如何建立与 ESP32 的 WebSocket 连接,如何接收和处理 Opus 数据,如何进行数据转换以及如何调用 Sherpaonnx 进行语音识别等。但需要注意的是,仅仅依靠提示词让 Cursor 生成完整可用的复杂应用可能具有一定的局限性,建议您在具备相关基础知识的前提下,结合 Cursor 的辅助来逐步完成开发。
2025-03-06