Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

图片识别

Answer

以下是关于图片识别的相关内容:

神经网络在图片识别中的应用: 对于印刷体图片的识别,通常会先将图片变为黑白、调整大小为固定尺寸,然后与数据库中的内容进行对比以得出结论。但这种方法存在多种问题,如字体多样、拍摄角度不同会引入例外情况,且整体是基于不断添加规则,对于复杂情况如围棋难以应对。神经网络专门处理未知规则的情况,其发展得益于生物学研究和数学的支持,能够处理如手写体识别等未知情况。推荐阅读《这就是 ChatGPT》一书,了解更多相关知识。

判断图片是否为 AI 生成: 要培养判断图片是否为 AI 生成的技能,需要训练大脑模型。对于不善于此的朋友,可以借助一些网站,如 ILLUMINARTY(https://app.illuminarty.ai/),通过对大量图片数据的抓取和分析来给出画作属性的判断可能性。但在测试中可能存在误判,如结构严谨的真实摄影作品可能被识别为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。同时,介绍了通过画面风格、物品 bug 等细节辨别图像是否为 AI 生成的方法,但需注意 AI 在不断学习,这些方法可能随时失效。

Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人

如果识别一个印刷体图片,我可能会怎么做神经网络解决的是未知规则的处理。先把图片都变成黑白大小变成固定尺寸和数据库的东西对比得出结论然而,这种情况过于理想化。不仅存在多种字体,即使对于印刷体,不同的拍摄角度也引入了多种例外情况。虽然存在图形算法进行矫正,但整体方法仍然是基于不断添加规则。这种方法本质上是试图通过不断增加和完善规则来解决问题,这显然是不可行的。虽然这种方法可以解决象棋的问题,但对围棋来说就非常困难了。围棋的每个节点有三种可能状态:白、黑或空,加上不同节点间状态的组合,现有的资源无法应对。神经网络专门处理未知规则的情况。将图片转换为黑白,调整图片至固定尺寸,与数据库中的内容进行对比,最终得出结论。神经网络的发展得益于生物学研究的支持,并且在数学上提供了一种方向,使其能够处理未知的情况,如手写体识别。关于这部分内容,非常建议看《这就是ChatGPT》这本书,它的作者是被称为”在世的最聪明的人”,研究神经网络几十年,创作了Mathematica、Wolfram等备受推崇的软件,这本书最特别之处还在于,导读序是美团技术学院院长刘江老师回顾了整个AI技术发展的历史,对于了解AI,大语言模型计算路线的发展,起到提纲挈领的作用,非常值得一读。本文写作过程中得到了[byzer-llm](https://github.com/allwefantasy/byzer-llm)作者祝威廉的大力支持,在此感谢。byzer-llm选择了一个非常特别的技术路线,在大模型时代显得尤为重要。

如何判断一张图片是否 AI 生成的

当然,要培养出鉴赏AI的技能,多少还是需要我们训练训练自己的大脑模型的。那如果不善于此的朋友,想要判断眼前的作品是否是AI造物呢?AI技术自己带来的造假难题,也该由AI自己的同僚互鉴打假来解决。现在已有不少网站在做这件事情,通过对大量的图片数据的抓取和分析,给出对画作属性的判断可能性。例如使用AI来鉴别AI绘图性质的网页:ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中,有些结构严谨的真实摄影作品,反而会被识别为AI作图。这跟我们前面提到的,AI作画很难完成严谨真实的结构这一点,是相互矛盾的。鉴别的AI认为,过于严谨的图像不像是真实的人造产物。而画图的AI其实难以生成严谨的结构造型。这就是鉴定AI自身的逻辑算法,并不能像人类一样综合去考虑不符合人的逻辑的各种表现。多试几张,就能磕着瓜子看AI吵架了。甚至作长者摇头抚须状,长叹一声,「AI后生们,还有很长的路要走啊。」我们看完AI显眼包的快乐丢撵后,来聊聊「我们为什么要鉴别AIGC」?已经「知其然」,也大略「知其所以然」,而后终于能顺势讨论讨论「知何由以知其所以然」。

如何判断一张图片是否 AI 生成的

本篇介绍了一些通过画面风格、物品bug等细节,辨别图像是否是AI生成的若干方法。当然,就在我们完成这篇经验帖的同时,AI也在飞速地修正这些做图bug。每一分钟,这份帖子所提供的方法,可能都在失效。AI在不停学习……

Others are asking
在开会时实现AI识别语音成文档
目前在开会时实现 AI 识别语音成文档的技术已经较为成熟。常见的实现方式有使用专门的语音识别软件或服务,例如科大讯飞、百度语音等。这些工具通常可以实时将会议中的语音转换为文字,并生成相应的文档。在使用时,需要确保有良好的录音设备以获取清晰的语音输入,同时要注意对识别结果进行适当的校对和修正,以提高文档的准确性。
2025-03-13
写一个可以对接金蝶云之家OA的插件,可以识别上传的发票与之前发票是否有重复提交的情况?
目前没有关于如何编写对接金蝶云之家 OA 并实现识别上传发票是否重复提交的具体内容。但一般来说,要实现这样的插件,您可能需要以下步骤: 1. 了解金蝶云之家 OA 的接口和数据格式规范,以便能够与之进行有效的交互。 2. 建立发票数据的存储和管理机制,用于保存已上传的发票信息。 3. 设计发票识别的算法和逻辑,能够提取发票的关键特征,如发票号码、日期、金额等。 4. 对比新上传发票的特征与已存储发票的特征,判断是否存在重复。 这是一个较为复杂的开发任务,可能需要涉及到软件开发、数据库管理、算法设计等多方面的知识和技术。
2025-03-13
意图识别
意图识别是根据输入的内容决定后续环节的流程,有点像 if/else 。从输出看,其 reason 通常为英文。可以简单理解为是一个简化版的大语言模型节点,为更精准识别,可优化选项使其更精准凝练,不行的话可换用大语言模型节点。 在自然语言处理领域,意图识别已被广泛讨论。随着大型模型兴起,尤其是用作智能体的 Brain 模块时,承担了主要工作任务。当用户输入指令,通过感知模块传递到 Brain 模块,Brain 模块需做出反应,本质上是一种分类任务,区分用户具体意图,在单一或多智能体系统中都至关重要。通过如 Siri、小爱同学等常见智能助手的例子可更直观理解。大型模型执行意图识别任务主要基于前期大量数据训练得到的模型,可通过微调适应特定领域需求。 在 Manus 多智能体通用任务系统中,意图识别从用户输入中提取关键词和任务类型,引导用户补充信息以明确需求。
2025-03-12
帮我完成基于深度学习的草莓目标识别的毕设
很抱歉,目前没有关于基于深度学习的草莓目标识别毕设的具体内容。但我可以为您提供一个大致的指导框架: 首先,您需要收集大量包含草莓的图像数据,并对这些数据进行标注,例如标记出草莓的位置和类别。 然后,选择适合的深度学习模型,如卷积神经网络(CNN),可以考虑使用经典的模型架构如 VGG、ResNet 等,或者根据您的需求进行适当的修改和优化。 在训练模型时,要注意设置合适的超参数,如学习率、迭代次数等,并使用合适的优化算法,如随机梯度下降(SGD)、Adagrad 等。 在模型训练完成后,进行评估和验证,可以使用准确率、召回率、F1 值等指标来衡量模型的性能。 最后,对模型进行优化和改进,以提高识别效果。 希望以上框架对您有所帮助,祝您顺利完成毕业设计!
2025-03-09
我现在需要做我的毕业设计名为“基于深度学习的草莓目标识别系统”,你能告诉我如何制作以及用到这里的哪些ai工具、
对于您的“基于深度学习的草莓目标识别系统”毕业设计,以下是一些制作的步骤和可能用到的 AI 工具: 制作步骤: 1. 数据收集:收集大量包含草莓的图像数据,并对其进行标注,例如标记出草莓的位置和类别。 2. 数据预处理:对收集到的数据进行清洗、增强、裁剪等操作,以提高数据质量和模型的泛化能力。 3. 选择模型架构:可以考虑使用常见的深度学习目标检测模型,如 Faster RCNN、YOLO 等。 4. 训练模型:使用预处理后的数据对选择的模型进行训练。 5. 模型评估:使用测试集对训练好的模型进行评估,如准确率、召回率等指标。 6. 模型优化:根据评估结果对模型进行调整和优化,例如调整超参数、增加数据量、使用更复杂的模型等。 可能用到的 AI 工具: 1. TensorFlow:一个广泛使用的深度学习框架,提供了丰富的模型构建和训练工具。 2. PyTorch:另一个流行的深度学习框架,具有灵活的编程接口和强大的计算能力。 3. OpenCV:用于图像处理和数据预处理。 4. LabelImg:用于图像数据的标注。 希望以上内容对您有所帮助,祝您毕业设计顺利!
2025-03-09
所以我可以理解为CNN是一种图像分类识别的AI算法技术吗
卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。 ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。 连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。 虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。
2025-03-07
Google 图片视频AI
以下是关于 Google 图片视频 AI 的相关信息: Google 发布了 AI 视频 Veo2 和 AI 绘图 Imagen3。 关于 AI 视频 Veo2: 官网介绍可申请 waitlist,链接为 https://labs.google/fx/zh/tools/videofx 。 引入了改进后的物理引擎,能模拟真实世界动态变化。 能更好地捕捉和模拟人类动作、运动轨迹,并高精度呈现。 具有电影级视觉效果,能生成有深度感和层次感的场景。 提供灵活的镜头控制选项,允许用户调节镜头角度、视角和焦距等参数。 关于 AI 绘图 Imagen3: 绘图链接为 https://labs.google/fx/tools/imagefx 。 是最高质量的文本到图像模型,能生成比之前模型更好细节、更丰富光照和更少干扰伪影。 在图像细节和清晰度上有显著提高,生成的图像更生动、真实,细节更丰富。 相关报道和链接: 数字生命卡兹克:Google 全新发布 AI 视频 Veo2、AI 绘图 Imagen3 何以凌越,https://mp.weixin.qq.com/s/4ACndSdfG8az3gdLn5QLIQ 。 量子位:谷歌版 Sora 升级 4K 高清!一句话控制镜头运动,跑分叫板可灵海螺,https://mp.weixin.qq.com/s/8H286tyxbTeZrtEBDZHaA 。 锤爆 Sora,尺度最大,谷歌发布最强视频模型 Veo2,叫板海螺可灵,https://mp.weixin.qq.com/s/sMECORvSikuKHNaEzPor6Q 。 谷歌版 Sora 来了,4K 高清暴击 OpenAI!视频生图新卷王,更理解物理世界,https://mp.weixin.qq.com/s/PFeyrX2q9mWd6GIrJ9qdWQ 。 谷歌的 Imagen 3 终于来了——它是最好的 AI 图像生成器吗?https://mp.weixin.qq.com/s/gcyGvA6_9mxN9yz__jRRHQ 。 测评: ,Google 视频和图像生成模型更新包括 Veo 2、Imagen 3 和一个新工具 Whisk 。
2025-03-17
根据图片加文字描述生成分镜脚本的提示词
以下是一些根据图片加文字描述生成分镜脚本的提示词示例及相关说明: 1. 对于影片《哪吒·龙影之下》的分镜脚本,其提示词包括分镜编号、分镜内容描述、人物、情绪、对白或配音等方面,如“1|高中操场,学生们活动|学生群|活跃|无”。 2. 在商业级 AI 视频广告的分镜创作中,提示词的结构为:要做多长时间的视频、要出多少个分镜、每个分镜包含哪些内容、对输出格式有什么要求。例如“请把这个故事脚本改写成一个 30 秒时长的广告片分镜脚本,脚本结构包括序号、场景、景别、镜头时长、镜头运动、画面内容、对话旁白和音乐音效。每个分镜拆分细致一些,补充多一些细节,单镜头时长控制在不超过 5 秒,一共拆分 10 个分镜”。 3. 在“城市狂想”的图片制作中,针对分镜内容生成了不同风格的提示词,如“远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1”。 希望以上内容能对您有所帮助。
2025-03-17
图片生成ai给我推荐一下
以下为您推荐一些图片生成 AI 工具: 1. 星流一站式 AI 设计工具: 左侧图片案例板块包含大量图像例图与生图信息,滑动鼠标到图像的“info”区域可直接将图像发送到画布与生图信息调取。 图像筛选功能: 推荐:根据您正常进行的生图参数(模型、提示词)进行推荐。 热门:向您推荐浏览量最高的图片。 搜索:输入对需求图像的描述,进行图像搜索。 图像调取: 点击“发送到画布”直接将图像发送到“无限画布”中。 生图参数调取: 整体调取:点击“发送到生成器”将全部参数进行调取。 单个调取:可点击右侧单独的发动键调取单个参数。 2. Tripo AI:VAST 发布的在线 3D 建模平台,能够利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。基于一个数十亿参数级别的 3D 大模型,能实现快速的 2D 到 3D 转换,并提供 AI 驱动的精准度和细节。 3. Meshy:功能全面,不仅支持文本生成 3D,还支持图片生成 3D 以及 AI 材质生成。用户可通过上传图片并描述需要的材质和风格,生成高质量的 3D 模型。 4. CSM AI:支持从视频和图像创建 3D 模型。Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象,再转换为 3D 模型。 5. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成。用户可上传图片或输入文本提示词来生成 3D 模型。 6. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能够将图像或文本快速转换成 3D 模型,并提供了图像到 3D、文本到 3D 和文本到纹理等多种功能。 此外,图像生成也离不开深度学习算法,如生成对抗网络(GANs)、变分自编码器(VAEs),以及 Stable Diffusion 等,以创建与现实世界图像视觉相似的新图像。一些具有代表性的海外项目包括: 1. Stable Diffusion:文本生成图像模型,主要由三个部分组成,分别是 VAE、UNet 网络和 CLIP 文本编码器。 2. DALLE 3(Open AI):OpenAI 基于 ChatGPT 构建的一种新型神经网络,可以从文字说明直接生成图像。 3. StyleGAN 2(NVIDIA):一种生成对抗网络,可以生成非常逼真的人脸图像。 4. DCGAN(Deep Convolutional GAN):一种使用卷积神经网络的生成对抗网络,可生成各种类型的图像。
2025-03-17
我是美区Tiktok shop 的卖家,希望AI用图片生成带货短视频
以下是利用 AI 用图片生成带货短视频的步骤: 1. 添加产品/介绍背景:如果有自己的视频/图片素材,可以直接使用;若没有产品背景/产品介绍,可以根据搜索添加。 2. 扣像结合背景:在剪映里面把数字人扣下来,导入视频,点击画面选择抠像,点击智能扣像,调整到合适的大小和位置。 3. 添加字幕和音乐:智能识别字幕,可搜索添加音乐或手动添加自己喜欢的音乐。 这样就可以根据您的需求结合您的图片生成您需要的视频,用于带货或讲解产品。如果应用在直播也是可以的,把视频做长些即可,但直播可能需要收费,短视频可以通过购买邮箱注册使用免费的时长或直接购买会员版。
2025-03-17
用 ai 整理图片
以下是关于用 AI 整理图片的相关内容: 在图像生成与优化方面: 初步生成:使用 DALLE 3 和 Midjourney(MJ)进行初步图像生成。DALLE 3 凭借强大的文本识别能力快速生成符合意图的画面,MJ 则通过垫图功能(Sref 和iw 组合)确保图像风格一致。 图像优化:对于 DALLE 3 和 MJ 跑不出来的图,使用 Stable Diffusion(SD)进行图像的细节处理,尤其是局部重绘,例如调整人物的手部细节。通过 magnific.ai 工具对图像进行超分处理,提高画质。 在关键词方面: 主题描述:图片内容分为二维插画和三维立体两种表现形式。描述场景、物体或人物时,应清晰准确,对于场景中的人物最好独立描述。 设计风格:可通过找风格类关键词参考或垫图/喂图,让 AI 生成特定风格的图片。材质相关的关键词有很多门道,需要针对某一种风格单独进行“咒语测试”。 在老照片处理方面: 将照片放入后期处理,使用 GFPGAN 算法使人脸变清晰,但无法使头发、衣服等元素变清晰。 接着将图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。
2025-03-16
你可以生成图片吗
以下是关于生成图片的相关信息: Sora 是一种可作为世界模拟器的视频生成模型,能够通过在具有一个帧的时间范围的空间网格中排列高斯噪声的分块来生成图像,可生成不同大小的图像,分辨率高达 2048x2048。 ComfyUI Flux 与 runway 结合可以制作绘画视频,包括生成图片(通过提示词让 flux 生成技术草图、CAD 等)、绘制视频(在 runway 中使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧)、草图上色(使用 flux 的 controlNet,depth 固定,Union 版本不建议权重调太高)、生成上色后的视频等。 LayerStyle 副本中的 LayerUtility 中的 TextImage 可以从文字生成图片以及遮罩,支持字间距、行间距调整,横排竖排调整,可设置文字的随机变化,包括大小和位置的随机变化。节点选项包括 size_as、font_file、spacing、leading、horizontal_border、vertical_border、scale、variation_range、variation_seed、layout、width、height、text_color、background_color 等。
2025-03-16