Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AGI多久可以实现

Answer

目前关于 AGI 实现的时间存在多种推测和计划。OpenAI 总裁 Greg Brockman 在 2019 年表示,在微软投资 10 亿美元之后,OpenAI 计划在五年内构建一个与人类大脑大小相当的模型来实现 AGI,即 2019 + 5 = 2024 年。同时,网络上有一篇名为《揭示 OpenAI 计划在 2027 年前实现通用人工智能(AGI)的计划》的文档传播,其中提到 OpenAI 于 2022 年 8 月开始训练一个拥有 125 万亿参数的多模态模型,计划在 2027 年发布的 Q*2025(GPT-8)将实现完全的 AGI。但需要注意的是,这些信息多为搜集和推测,包括各种报道和推文的拼凑猜测,并非都能轻易验证,大家可以当娱乐看并自行辨别文中推测的可能性。

Content generated by AI large model, please carefully verify (powered by aily)

References

OpenAI 通用人工智能(AGI)的计划被揭露

来自Longjumping-Sky-1971的两篇帖子。我之所以包含这些,是因为他提前几周准确预测了GPT-4的发布日期(没有人事先公开发布这些信息,这意味着他有一个内部信息源)。他的帖子现在更有可信度——他声称图像和音频生成将在2023年第三季度进行训练。如果视频生成训练是同时进行的或紧随其后,这与Siqi Chen声称GPT-5在2023年12月完成训练的说法相吻合。直到2020年2月,也就是GPT-3发布前几个月。一篇来自《技术评论》的文章,这是关于OpenAI的“内部故事”,似乎表明OpenAI正处于一个“秘密”项目的早期阶段,涉及一个在图像、文本和“其他数据”上训练的AI系统,而且OpenAI的领导层认为这是实现AGI最有希望的方式。我在想这可能指的是什么。接下来将展示来自OpenAI总裁的一些引述——来自2019年——它将告诉你他们的计划是什么。OpenAI的总裁Greg Brockman在2019年表示,在微软当时投资了10亿美元之后,OpenAI计划在五年内构建一个与人类大脑大小相当的模型,而这正是他们实现AGI的计划。2019+5=2024.这两个信息源显然都在提到同一个实现AGI的计划——一个与人类大脑大小相当的AI模型,将在“图像、文本和其他数据”上进行训练,计划在2019年之后的五年内完成训练,也就是到2024年。这似乎与我在这份文件中列出的所有其他信息源相吻合...正如我将在接下来的几张幻灯片中展示的,AI领域的领导者们突然开始敲响警钟——几乎就像他们知道一些非常具体的信息,而这些信息普通大众并不知道。“我曾经认为这还需要30到50年,甚至更长的时间。显然,我现在不再这么认为了。”来自CNN的报道AI之父离开google的新闻。

OpenAI 通用人工智能(AGI)的计划被揭露

作者:AIGC研修社源地址:https://mp.weixin.qq.com/s/z_KjoCXLoUflSZOla6pNpw内容来源于推特用户的搜集和推测,是各种报道和推文的拼凑猜测,大家可以当娱乐看,自行辨别文中推测的可能性。今天凌晨一篇名为《揭示OpenAI计划在2027年前实现通用人工智能(AGI)的计划》的google文档开始在网络上传播,这篇文档一共54页,是来自推特Jackson(@[vancouver1717](https://twitter.com/vancouver1717)),他搜集了目前网络上所有的公开资料来推论AGI已经实现,真是太刺激了,可以结合前几天马斯克告OpenAI违约,要求其公布进行中的AGI计划这个新闻,还有去年Ilya公开反对全体的董事会成员,开掉了CEO奥特曼,大家一直想知道Ilya究竟看到了什么?openai的AGI真的已经实现了么?我们可以一起来看看这篇揭露文档。以下是这篇文档的中文翻译。文末附上英文版PDF。在这份文件中,我将揭示我收集到的有关OpenAI(推迟)计划在2027年前创建人类水平的通用人工智能(AGI)的信息。并非所有信息都能轻易验证,但希望有足够的证据来说服你。摘要:OpenAI于2022年8月开始训练一个拥有125万亿参数的多模态模型。第一阶段被称为Arrakis,也叫做Q*。该模型于2023年12月完成训练,但由于高昂的推理成本,发布被取消了。这是原计划在2025年发布的GPT-5。Gobi(GPT-4.5)已被重新命名为GPT-5,因为原来的GPT-5已被取消。

OpenAI 通用人工智能(AGI)的计划被揭露

Q*的下一阶段,最初被称为GPT-6,但后来重新命名为GPT-7(原计划在2026年发布),由于埃隆·马斯克最近的诉讼而被暂停。计划在2027年发布的Q*2025(GPT-8)将实现完全的AGI......Q*2023=48智商Q*2024=96智商(推迟)Q*2025=145智商(推迟)埃隆·马斯克因为他的诉讼导致了推迟。这就是我现在揭示这些信息的原因,因为不会再造成进一步的伤害。我已经看过很多关于人工通用智能(AGI)的定义,但我将简单地将AGI定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。这是现在大多数人对这个词的定义。2020年是我第一次对一个AI系统感到震惊——那就是GPT-3。GPT-3.5是GPT-3的升级版本,也是ChatGPT背后的模型。当ChatGPT发布时,我感觉更广泛的世界终于赶上了我两年前就开始互动的东西。我在2020年广泛使用GPT-3,并对它的推理能力感到震惊。GPT-3及其半步后继者GPT-3.5(在2023年3月升级为GPT-4之前,它驱动了现在著名的ChatGPT)在某种程度上是朝着AGI迈出的巨大一步,而早期的模型则不是这样。需要注意的是,像GPT-2这样的早期语言模型(基本上自Eliza以来的所有聊天机器人)实际上没有真正连贯回应的能力。那么为什么GPT-3会有如此巨大的飞跃呢?

Others are asking
agi是什么意思
AGI 即 artificial general intelligence,指的是通用人工智能,即能够做任何人类可以做的事。 在 AI 领域,AI 分为 ANI 和 AGI,ANI(artificial narrow intelligence,弱人工智能)只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;而 AGI 则涵盖了广泛的认知技能和能力,符合 1994 年心理学家们对智能的广泛定义,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等能力,并且要求这些能力在或超过人类水平。名词“通用人工智能”(AGI)在 2000 年代初流行起来,以强调从“狭义 AI”到更广泛的智能概念的追求。
2025-02-07
作为一个研究生毕业对AI零基础的小白,如何学习AI知识搭上agi的快车
对于研究生毕业且对 AI 零基础的小白,想要学习 AI 知识并搭上 AGI 的快车,以下是一些建议: 1. 课程学习:可以选择【野菩萨的 AIGC 资深课】,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的优质 AI 课程之一,技术更新快,涵盖 AI 绘画、视听语言和 ChatGPT 等多方面知识,能满足不同阶段学习者的需求。扫码添加菩萨老师助理可了解更多信息。 2. 利用知识库:比如 WayToAGI 知识库,其中通识篇的“现有常见 AI 工具小白扫盲”和“AI 常见名词、缩写解释”等内容适合纯小白。 3. 明确学习路径: 关键词:少就是多、先有个初识、目录索引推荐、兴趣最重要、先动手。 学习路径如同游戏通关,有主线和支线。 学以致用,通过学习分享不断填补知识的缝隙来成长。 4. 实践与应用:像 YoYo 一样,从不懂 AI 和提示词工程,到能够创建智能体、应用于工作等,不断在实践中提升自己。 总之,找到适合自己的学习方式和内容,持续学习和实践,逐步提升在 AI 领域的能力。
2025-02-07
什么是AGI?
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 在 AI 领域,还分为 ANI(弱人工智能)和 AGI,ANI 得到巨大发展但 AGI 还没有取得巨大进展。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。而 AGI 能做任何人类可以做的事。更多信息请见(AGI)。
2025-02-07
我是位小白,AGI学习应用怎么起步
对于 AGI 学习应用的起步,以下是一些建议: 1. 澄清学习前的状态: 可能不理解 AI 和提示词工程等概念。 像文科生、不懂代码、英语差等情况不影响起步,但可能会走一些弯路。 可以先注册尝试各种 AI 工具。 2. 明确学习后的现状: 能够搓多 Agent 的智能体,但可能需要进修 Python 以搓更多智能体。 可以进行营销文案 demo、SQL 代码进阶学习应用等。 能够创建图像流智能体和 Agent 智能体玩具,并在公司中实践智能客服从创建到应用的过程,实现企业微信机器人问答的基本功能。 3. 学习路径: 关键词:少就是多、先有个初识、目录索引推荐、兴趣最重要、先动手。 学习路径类似游戏通关,有主线和支线。 学以致用,通过学习分享不断填补知识的缝隙来成长。 推荐布鲁姆分类法学习路径: 应用方面:深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用来解决实际问题或提升效率。 分析方面:大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 总之,AGI 的学习是一个持续的过程,找到适合自己的方向和方法很重要。
2025-02-07
通往AGI之路,作为新手小白应该怎么学习
对于新手小白学习通往 AGI 之路,以下是一些建议: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 个人学习心得方面: 像 YoYo 一样,从不懂 AI 和提示词工程的蛮干状态,到能够创建智能体和应用于工作中。找到适合自己的学习路径,比如以兴趣为导向,注重学以致用,通过学习分享不断填补知识的缝隙来成长。 4. 理解技术原理与建立框架方面: 可以观看如“【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili”(由林粒粒呀主讲)和“用大模型保存你的全部人生,你会接受吗:专访安克创新 CEO 阳萌|大咖谈芯第11 期_哔哩哔哩_bilibili”等视频,帮助建立入门框架。
2025-02-06
agi是什么
AGI 即人工通用智能(Artificial General Intelligence),是指能够做任何人类可以做的事的人工智能。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 目前,AI 分为 ANI 和 AGI,ANI(Artificial Narrow Intelligence 弱人工智能)得到巨大发展,而 AGI 还没有取得巨大进展。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
2025-02-05
如果自己一个人要完成一个类似游戏的虚拟世界,需要一些什么软件,并且需要多久完成
要一个人完成类似游戏的虚拟世界,可能需要以下软件: 1. 图像生成软件,如 Midjourney、Stable Diffusion 等,用于生成概念图像和美术作品。 2. 3D 建模软件,用于创建 3D 模型、添加纹理和效果等。 完成所需的时间因多种因素而异,包括个人的技能水平、项目的复杂程度、投入的时间和精力等。像《Red Dead Redemption 2》这样复杂的游戏,制作成本近 5 亿美元,花了将近 8 年的时间来建造。但如果是相对简单的虚拟世界,时间可能会短很多。不过,这需要您具备扎实的相关技能和持续的努力。
2025-01-10
AI多久能学完?
学习 AI 所需的时间因人而异,没有一个固定的期限。不过,对于初学者来说,有一些简明的入门教程可以帮助您在 20 分钟内掌握 Python 和 AI 的相互调用,并完成一些基础任务,例如完成一个简单程序、一个爬虫应用以抓取公众号文章,以及一个为公众号文章生成概述的 AI 应用。 在深入学习 AI 时,很多人会因需要编程而感到困难,且各类教程默认会打命令行,导致入门不易。 从更广泛的角度来看,AI 是一个不断发展的领域,需要持续学习和更新知识。就像 Python 在 AI 领域被广泛使用,它拥有丰富的标准库,还能通过类似 pip 的工具和 GitHub 等平台获取更多资源。 而 OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更灵活的服务,可通过代码调用完成更多自动化任务。 总之,学习 AI 是一个长期的过程,取决于个人的基础、学习能力和投入的时间精力。
2024-12-16
设定好程序,在没有人工干预的情况下,AI能保持多久的工作效率。
AI 在没有人工干预的情况下能保持的工作效率时长难以给出确切的固定值,其受到多种因素的影响。 一方面,AI 系统的设计和训练质量会对其持续工作效率产生重要影响。如果系统经过良好的设计和充分的训练,具备应对各种情况的能力,可能在较长时间内保持较高的工作效率。 另一方面,运行环境和所处理任务的复杂性也起着关键作用。例如,处理简单、重复性高且规则明确的任务时,AI 可能在较长时间内保持稳定的效率。但对于复杂多变、需要不断适应新情况的任务,其效率可能会随着时间有所波动。 在实际应用中,一些案例显示,如产品经理使用 GPT 解决性能问题,SQL 执行时间大幅缩短,效率显著提升。但也有观点认为,对于某些工作场景,AI 带来的效率提升有限。 此外,政策层面,如拜登签署的 AI 行政命令中,也强调了在医疗、教育等领域推进 AI 的合理使用,并关注其对劳动力市场的影响,采取措施支持工人等。 总之,AI 无人工干预下的工作效率保持时间因多种因素而异,需要综合考虑系统本身、任务特点等多方面因素。
2024-11-13
学AI难吗?小白需要多久入门?
学习 AI 的难度因人而异,但对于小白来说,入门是可行的。 例如,在“育儿:用 AI 开发远古动物列表”中提到,若只是学习相关应用,了解一些最基础的网页和编程知识即可,从小白开始估计一天甚至几个小时之内就能学会,因为绝大多数的工作还是由 AI 完成。 在“写给不会代码的你:20 分钟上手 Python + AI”中,考虑到深入学习 AI 时编程带来的困难以及各类默认会打命令行的教程导致的入门困境,这份入门指南旨在让大家更快掌握 Python 和 AI 的相互调用,能在接下来的 20 分钟内循序渐进地完成一个简单程序、一个爬虫应用抓取公众号文章、一个为公众号文章生成概述的 AI 应用等任务。 总的来说,小白入门 AI 的时间取决于学习的内容和个人的学习能力,短则几个小时,长则可能需要几天。
2024-09-28
陪护机器人最快多久能正式商用?
目前,在幼教场景中正在开发的陪伴机器人,预计半年内视频生成技术成熟,届时可实现一些创新功能。但对于陪护机器人整体的正式商用时间,由于不同应用场景和技术发展的差异,还难以给出确切的时间。在医疗领域,由 AI 驱动的护理机器人会早于手术机器人应用,但具体商用时间也不确定。总体而言,陪护机器人的正式商用时间受多种因素影响,仍需进一步观察和等待技术的发展与完善。
2024-09-04
你觉得通用机器人多久将成为现实
预测通用机器人的实现时间是一个复杂且具有不确定性的任务,涉及技术进步、经济因素、社会接受度等多个方面。尽管如此,我们可以基于当前的技术进展和趋势做出一些合理的推测。 当前的技术现状 1. 专用机器人:目前,机器人在特定领域(如制造业、物流、医疗等)已经展现了显著的能力。这些专用机器人在执行重复性和精确性任务方面表现出色。 2. 人工智能和机器学习:AI和机器学习技术迅速发展,在图像识别、自然语言处理、自动驾驶等方面取得了显著进展。深度学习算法、大数据和计算能力的提升,使得AI能够处理更加复杂和多样化的问题。 3. 机器人感知与行动:机器人感知(如视觉、听觉、触觉)和行动(如移动、抓取、操作)的能力在不断提升。先进的传感器和灵巧的机械手臂为机器人带来了更多的感知和操作能力。 挑战和难点 1. 通用智能:通用机器人需要具备通用人工智能(AGI),即能够处理多样化任务并在不同环境中灵活应对。目前,AGI仍是一个未解的科学难题,尽管AI在某些领域表现出超人的能力,但这些能力通常是狭窄和特定的。 2. 多模态融合:通用机器人需要整合视觉、听觉、触觉等多种感知能力,并能够在复杂环境中做出合理决策。这种多模态融合仍存在技术瓶颈。 3. 自主学习与适应:通用机器人需要具备自主学习和适应环境变化的能力。尽管强化学习等技术在某些方面取得进展,但在现实世界中实现高效的自主学习仍然困难。 4. 伦理与安全:通用机器人的广泛应用还涉及伦理和安全问题,如隐私保护、决策透明性、安全性和社会影响等。这些问题需要在技术实现之前得到解决和规范。 预测时间 基于以上分析,关于通用机器人何时能成为现实,可以考虑以下几个时间段: 1. 短期(510年): 专用机器人将在更多领域得到广泛应用,技术将更加成熟和可靠。 人工智能和机器人技术将继续进步,尤其是在感知、认知和行动方面的能力。 2. 中期(1020年): 我们可能会看到一些具备较高通用性的机器人出现在特定环境和任务中,如家庭助手机器人、护理机器人等。 这些机器人能够在一定范围内处理多样化任务,但距离真正意义上的通用机器人仍有距离。 3. 长期(20年以上): 真正的通用机器人,即具备类似人类的通用智能和适应能力的机器人,可能在这一时期开始出现。 这需要在人工智能、机器人技术、自主学习、伦理和安全等多个方面取得重大突破。 结论 尽管通用机器人的实现面临许多技术和非技术挑战,但随着科技的不断进步,我们有理由相信,在未来20年或更长时间内,通用机器人有可能从实验室走向现实,并在特定领域逐步展现其能力。然而,真正达到广泛应用的通用机器人还需要克服许多难题,并且这不仅仅是技术上的突破,还包括社会、伦理和法规方面的准备。
2024-05-22
如何实现稳定的ai agent
要实现稳定的 AI agent ,可以从以下几个方面考虑: 1. 提示词工程与工具调用能力的配合:设计出一套与知识图谱相结合的工具调用逻辑,稳定人设。通过缩小 max_length 防止 LLM 长篇大论,每次输入到上下文窗口中的记忆只返回最近几轮的对话,并利用查询知识图谱的信息来实现永久记忆。 2. 工具设计:将与知识图谱交互这一大的任务,细分为查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表等多个工具,组成一个工具包供 LLM 调用。 3. 构建数字人灵魂: 写一个像人一样的 Agent ,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。 解决灵魂部分如何驱动躯壳部分的问题,将灵魂部分的所有接口定义出来,躯壳部分通过 API 调用。 注意实时性,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,要解决网络耗时和模型推理耗时问题。 考虑多元跨模态,根据实际需求添加其他感官的交互。 处理拟人化场景,如插话、转移话题等情况。 4. 工作流的设计模式:可以运用吴恩达教授提出的设计模式,如 Reflection 模式,设计工作流先检索知识库的活动内容,再通过 LLM 大模型区块进行数据修正,最终输出符合意图的结果。
2025-02-06
有哪些可以实现批量切片生成短视频的AI剪辑工具
以下是一些可以实现批量切片生成短视频的 AI 剪辑工具: 1. Opus Clip:专注长视频转短视频场景,能自动识别长视频中的精彩片段并提取重排。创始人 Young Z 在 22 年疫情期间创业,尝试多个方向后形成产品形态。23 年底推出 7 个月后便获取了 500 万注册用户和 1000 万 ARR。支持手动切片和 AI 剪辑切片,还支持创作者通过 Prompt 输入剪辑需求,提供作品发布日历、视频数据分析后台全套创作者工具等。网页版访问:https://www.opus.pro/ ;官方推特:https://x.com/OpusClip 。 2. 剪映:有很多人性化设计和简单音效库/小特效,但无法协同工作和导出工程文件,应用于商业化效果有限。剪辑流程包括视频粗剪、定剪、音效/音乐、特效、包装(如字幕)等。 3. 以下是另外几个视频 AIGC 工具: Raskai:可将短视频素材直接翻译至多语种。 Invideo AI:输入想法后自动生成脚本和分镜描述,生成视频后人工二编再合成长视频。 Descript:屏幕/播客录制后以 PPT 方式做视频。 Veed.io:自动翻译自动字幕。 Clipchamp:微软的 AI 版剪映。 Typeframes:类似 Invideo AI,内容呈现文本主体比重更多。 Google Vids 。
2025-02-06
房地产策划可以通过AI实现有哪些使用场景
以下是房地产策划中可以通过 AI 实现的一些使用场景: 1. 房地产装修设计:像酷家乐装修设计软件,利用图像生成和机器学习技术为用户提供装修设计方案,用户可根据喜好选择和调整。 2. 虚拟布置房产:例如 Interior AI 使代理商能够虚拟布置房产。 3. 潜在客户转化:Zuma 帮助物业经理将潜在客户转化为预定的参观。 此外,AI 在活动策划中的应用也能为房地产策划提供参考,比如: 1. 活动主题及内容生成:根据房地产活动目标、参与者背景等信息,生成合适的活动主题和内容框架建议。 2. 邀请函和宣传文案生成:基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。 3. 现场活动管理:利用计算机视觉、语音识别等辅助管理活动现场的人流、秩序等。 4. 虚拟助手:AI 对话系统作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。 5. 活动反馈分析:自动分析活动反馈(文字、语音等),总结关键观点和改进建议。 6. 活动营销优化:基于参与者行为数据,优化营销策略,实现个性化营销。
2025-02-06
我想利用现有的20万条政务相关数据,基于qwen2.5 70B大模型构建自己的政务服务大模型,该如何做,请给出具体实现流程,谢谢!
以下是基于 qwen2.5 70B 大模型利用 20 万条政务相关数据构建政务服务大模型的大致流程: 1. 数据准备:对 20 万条政务相关数据进行清洗、预处理和标注,使其适合模型学习。 2. 模型选择与下载:选择 qwen2.5 70B 大模型,并按照相关说明进行下载。 3. 本地部署: 启动 OpenAI 兼容的 API 服务,根据硬件配置设置相关参数,如 tensorparallelsize(设置使用的 GPU 数量)、maxmodellen(定义最大输入序列长度)、maxnumbatchedtokens(设置 Chunked Prefill 的块大小)、maxnumseqs(限制并发处理的序列数量)。 遇到问题可参考相关内容。 4. 与模型交互:可以使用 Curl 或 Python 等方法与部署的模型进行交互,对于更高级的使用方式,可以探索如之类的框架。 5. 模型训练:模型训练是一个复杂且计算量极大的过程,需要大量的计算资源和时间。 需要注意的是,构建大模型是一个复杂的任务,需要具备一定的技术知识和经验。在实际操作中,可能会遇到各种问题,需要不断调试和优化。
2025-02-06
企业微信客服号能对接dify知识库,实现智能客服功能吗?
企业微信客服号能对接 Dify 知识库实现智能客服功能。以下是相关步骤: 1. 在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录并对话测试。 5. 把工作流编排聊天助手接入微信,创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 另外,通过云服务器、Dify、智能微秘书免费搭建微信机器人的部署 Dify 步骤如下: https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装。 零成本、零代码搭建一个智能微信客服的步骤如下: 1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。 2. 勾选同意,点击下一步。 3. 按步骤填写,勾选同意,注册企业微信。 4. 点击配置>到微信客服的企业信息,复制企业 ID>到 coze 页面进行粘贴填写企业 ID,并点击下一步。 5. 到微信客服的开发配置,找到到回调配置,复制 Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到 coze 页面进行粘贴,点击下一步。 6. 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 7. 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。 第一次设置回调地址时,注意目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。第一次设置成功后,后面再修改是特定页面。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。
2025-02-05
lmstudio可以支持联网搜索和本地知识库rag吗?如何实现?
LMStudio 能否支持联网搜索和本地知识库 RAG 以及如何实现的问题如下: 实现本地知识库 RAG 需加载所需的库和模块,如用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,通过特定函数从指定的 RSS 订阅 URL 提取内容,若需接收多个 URL 稍作改动即可。然后用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。 为文档内容生成向量,可使用文本向量模型 bgem3(从 hf 下载好模型假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。 实现 RAG 包括文档加载(从多种来源加载文档,LangChain 提供 100 多种文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块嵌入转换成向量形式并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、Output(把问题及检索出的嵌入片提交给 LLM 生成答案)。 基于用户问题从向量数据库中检索相关段落,根据设定阈值过滤,让模型参考上下文信息回答,从而实现 RAG。 还可创建网页 UI 并进行评测,对于同样的问题和上下文,基于不同模型进行多次测试,其中 GPT4 表现最好,Mixtral 次之,Qwen7b 第三,Gemma 和 Mistral 表现一般。总结来说,本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人,结合 RSSHub 处理和提供资讯,上下文数据质量和大模型性能决定 RAG 系统性能上限,RAG 能提升答案质量和相关性,但不能完全消除大模型幻觉和信息滞后问题。
2025-02-04