Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

企业微信客服号能对接dify知识库,实现智能客服功能吗?

Answer

企业微信客服号能对接 Dify 知识库实现智能客服功能。以下是相关步骤:

  1. 在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。
  2. 下载 Dify on WeChat 项目并安装依赖。
  3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。
  4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录并对话测试。
  5. 把工作流编排聊天助手接入微信,创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。
  6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。

更多内容请访问原文:https://docs.dify.ai/v/zh-hans/learn-more/use-cases/dify-on-wechat

另外,通过云服务器、Dify、智能微秘书免费搭建微信机器人的部署 Dify 步骤如下: https://docs.dify.ai/v/zh-hans/getting-started/install-self-hosted/docker-compose ,这些命令在宝塔面板的终端安装。

零成本、零代码搭建一个智能微信客服的步骤如下:

  1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。
  2. 勾选同意,点击下一步。
  3. 按步骤填写,勾选同意,注册企业微信。
  4. 点击配置->到微信客服的企业信息,复制企业 ID->到 coze 页面进行粘贴填写企业 ID,并点击下一步。
  5. 到微信客服的开发配置,找到到回调配置,复制 Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到 coze 页面进行粘贴,点击下一步。
  6. 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。
  7. 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。

第一次设置回调地址时,注意目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。第一次设置成功后,后面再修改是特定页面。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:Dify 怎么接入企业微信

在Dify的官网,我为你找到了一篇手把手教你如何将Dify应用接入微信生态的教程:1.创建聊天助手应用:在Dify平台创建基础编排聊天助手应用,获取API密钥和API服务器地址。2.下载Dify on WeChat项目:下载并安装依赖。3.填写配置文件:在项目根目录创建config.json文件,填写API密钥和服务器地址。4.把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或Docker部署。5.把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和LLM节点,发布更新并访问API。6.把Agent应用接入微信:创建Agent应用,设置对话模型和添加工具,生成API密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zh-hans/learn-more/use-cases/dify-on-wechat

马上观看看:通过云服务器,dify,智能微秘书来免费搭建微信机器人

https://docs.dify.ai/v/zh-hans/getting-started/install-self-hosted/docker-compose这些命令都是在宝塔面板的终端安装。如果你想学习这些命令是什么就还是直接给AI就可以。比如cd dify/docker是啥意思。这个docker-compose文件就是在这个/root/dify/docker目录下。这里边以后可以修改,可以学习里边的文件是什么意思。检查一下一共有7个在运行。docker compose ps如果nginx这个容器无法运行。把终端里输出的代码粘贴给AI,可能是80端口被占用了。按照AI的方法,检查谁占用的,都停止掉就可以了。也可以用别的方法,我是用这种方法。记住要一步步来,确保前一步成功再下一步,怎么确保就是把代码复制问AI。现在可以在浏览器的地址栏里,输入你的公网ip就可以。可以上腾讯云服务器上查,你的宝塔面板上的地址栏也有显示,去掉后面的:8888就是。进去以后邮箱密码随便填一下。随便建立一个知识库,知识库中选择设置。这时候你就可以选择模型了,国内的模型都有免费额度,随便选,你也可以都选。拿智谱ai举例。点设置,点从智谱ai获取钥匙,直接会进入智谱的官网。用手机号注册,添加API keys,复制一下。然后看一下有多少免费额度,智谱是资源包管理里边看,赠送500万一个月。这些大模型有的限制时间,有的不限制。有的给tokens额度有的给钱。最后把网址收藏一下。回到上面的图,把钥匙复制,保存就可以了。然后随便创建个应用。可以先选择智谱glm-4测试一下,聊两句,看有回应没,然后点发布。选择第二个,如图:点击api秘钥,创建一个,复制。

皇子:零成本、零代码搭建一个智能微信客服,保姆级教程

带大家一步步配置,闭眼操作:没啥难度,也不需要特殊条件,按步骤操作即可。a.访问微信客服https://kf.weixin.qq.com/,点击开通b.勾选同意,点击下一步c.按步骤填写,勾选同意,注册企业微信d.注册成功页面e:进来后,出现“企业未认证,累计仅可接待100位客户,认证后可提升接待上限”的提醒,个人测试无需认证,不影响使用。完成以上步骤之后,已经成功了50%了,剩下的就是复制粘贴。a.点击配置->到微信客服的企业信息,复制企业ID->到coze页面进行粘贴填写企业ID,并点击下一步b.到微信客服的开发配置,找到到回调配置,复制Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到coze页面进行粘贴,点击下一步c.到微信客服的开发配置,配置回调地址URL、复制Secret到coze的页面粘贴,到这里就差微信客服了第一次设置回调地址:注意⚠️:目前需要企业认证,才可以进行接入微信客服了。如果企业没有进行认证,则会在配置回调URL时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。第一次设置成功后,后面再修改是这个页面:d.到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到coze的页面粘贴,点击保存保存后,在coze发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
微信智能客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例中通过创建 Bot 创建。侧边导航栏一直有创建 Bot 的方式,仅主页有 Coze Assistant。两者区别在于: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮您教她技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,发布流程较复杂,下面是重新注册和解绑后重新配置的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-15
搭建在线知识库,在线客服
以下是关于搭建在线知识库和在线客服的相关内容: RAG 流程: 自顶向下,RAG 的流程分为离线数据处理和在线检索两个过程。 离线数据处理的目的是构建知识库,知识会按照某种格式及排列方式存储在其中等待使用。 在线检索是利用知识库和大模型进行查询的过程。 以构建智能问答客服为例,了解 RAG 流程中的“是什么”与“为什么”同等重要。 创建智能体: 手动清洗数据创建知识库: 点击创建知识库,创建画小二课程的 FAQ 知识库。 知识库的飞书在线文档中,每个问题和答案以“”分割。 选择飞书文档、自定义,输入“”,可编辑修改和删除。 点击添加 Bot,可在调试区测试效果。 本地文档: 注意拆分内容以提高训练数据准确度。 以画小二课程为例,先放入大章节名称内容,再按固定方式细化处理每个章节。 发布应用:点击发布,确保在 Bot 商店中能搜到。 开发:GLM 等大模型外接数据库: 项目启动:包括 web 启动(运行 web.py,显存不足调整模型参数,修改连接)、API 模式启动、命令行模式启动。 上传知识库:在左侧知识库问答中选择新建知识库,可传输 txt、pdf 等。可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色,如上传公司财报充当财务分析师、上传客服聊天记录充当智能客服等。MOSS 同理。
2025-04-13
智能微信客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例通过创建 Bot 创建。侧边导航栏一直有创建 Bot 方式,仅主页有 Coze Assistant。两者区别为: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮教技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,是本次分享重点,发布较复杂,下面是重新注册和解绑后重新配置微信客服的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营无间断。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-10
智能客服有什么特别好的产品形态?
智能客服的产品形态具有多样性,以下为您介绍: 1. 传统智能客服:但在 LLM 时代发展不佳,部分企业如 xxx 欠薪、解散团队或转向出海客服方向。这与智能客服行业的属性有关,其分为智能部分和客服部分,智能部分基于 NLP 技术进行 AI 对话管理,客服部分包括传统客服坐席、内部数据查询台、AI 与 IM 对接等。然而,企业对客服效果极为看重,且智能客服企业难以获取关键数据,导致很多采取本地部署,吃力不讨好且难有积累。 2. 基于 LLM 的智能客服:如 GPT 智能客服,通过将 FAQ 上传到知识库,让其具有客服应答能力。GPTs 作为 GPT 的一种 ID 账号形态,开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action),具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。 3. 特定功能的智能客服:例如帮助企业快速建立产品智能客服体系的方案,通过用户意图识别、知识库检索答案、AI 大模型总结输出答案等方式,提供全面的 AI 客服解决方案,提高回答准确率,降低企业商用 AI 客服门槛。还有如自动化处理和分析商品负面评论、为中小型消费品企业提供销售订单管理等特定功能的智能客服。
2025-04-10
有没有AI客服呢帮我解决天猫店铺的客服问题
天猫店铺有可用的 AI 客服,例如阿里的“小蜜”。在去年双 11 购物节,小蜜累计服务 4.1 亿次咨询,占比 85%,仅复杂纠纷转人工,用户满意度并未因是 AI 而下降,反而因回复快提升。此外,电商领域还有其他类似的 AI 客服应用,如京东推出的智能客服“JIMI”,每天处理数百万咨询,问题解决率超过 90%,使得京东客服团队规模缩小,有效分流了工作量。亚马逊的“智能客服代理”能通过对话 API 访问客户订单等数据,帮助顾客查询物流、办理退货,在上季度独立处理了超过 50%的客户请求。抖音小店客服也引入了 AI 回复,提升了商家客服响应速度。
2025-04-09
什么是Dify
Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。 该平台具有以下特点: 1. 强大的工作流构建工具。 2. 支持广泛的模型集成。 3. 提供功能丰富的提示词 IDE。 4. 拥有全面的 RAG Pipeline 用于文档处理和检索。 5. 允许用户定义 Agent 智能体。 6. 通过 LLMOps 功能持续监控和优化应用程序性能。 Dify 提供云服务和本地部署选项,满足不同用户需求。其开源特性确保对数据的完全控制和快速产品迭代。设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。无论是创业团队构建 MVP、企业集成 LLM 增强现有应用能力,还是技术爱好者探索 LLM 潜力,Dify 都提供相应支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,如果是个人研究,推荐单独使用 Dify;如果是企业级落地项目,推荐使用多种框架结合,效果更好。
2025-04-13
哪里可以搜到dify的相关学习资料
以下是一些可以搜到 Dify 相关学习资料的途径: 1. 您可以通过以下链接获取相关学习资料:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令通常在宝塔面板的终端安装,若想了解命令的含义,可直接询问 AI 。 2. 微信文章: ,该文章介绍了如何在几分钟内使用 Dify 平台快速定制网站的 AI 智能客服,即使是非技术人员也能操作。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-10
dify工作流中agent节点怎么使用
在 Dify 工作流中使用 Agent 节点的步骤如下: 1. 搭建工作流框架: 进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求自定义工作流信息,点击确认完成新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件(提供能力工具拓展 Agent 能力边界)、大模型(调用 LLM 实现文本内容生成)、代码(支持编写简单脚本处理数据)。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点完成框架搭建。 2. 测试 Agent 节点功能: 完成任何一个节点的配置后,都需要进行试运行测试以验证节点的运行效果。 步骤一:点击「测试该节点」。 步骤二:按格式要求输入待测试的输入内容,如果是 array 等其他格式,请自行对话 AI 或搜索网络确认格式要求。 步骤三:点击「展开运行结果」,检查输入、输出项是否有误。如果有误,请依次检查“测试输入内容”、“节点配置”是否有误,以及优化“提示词”以提升对生成内容的约束力。当多次测试时输入与输出都符合预期,就可以进入下一个子任务的配置。
2025-04-05
dify
Dify 是一个开源的大模型应用开发平台: 构建知识库的具体步骤: 准备数据:收集文本数据,包括文档、表格等格式,进行清洗、分段等预处理以确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好描述。 配置索引方式:提供三种索引方式(高质量模式、经济模式和 Q&A 分段模式),根据实际需求选择,如追求高准确度可选高质量模式。 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集使用方式。 持续优化:收集用户反馈,对知识库内容和索引方式持续优化和迭代,定期更新增加新内容。 平台特点: 结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,提供功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许用户定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 提供云服务和本地部署选项,满足不同用户需求,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队构建 MVP、企业集成 LLM 等提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,个人研究推荐单独使用 Dify,企业级落地项目推荐多种框架结合。
2025-04-01
dify教程
以下是关于 Dify 的教程: Differential Diffusion 教程: 技术适用场景:特别适用于需要保持图像整体一致性和自然感的场景。 软填充技术:用于平滑填补图像空白或损坏部分,同时细微调整周围区域,确保新填充内容与原始图像无缝融合。 强度扇:一种可视化不同编辑强度效果的工具,帮助用户通过可视化方式理解不同编辑强度的效果。 无需训练或微调:操作仅在推理阶段进行,不需要对模型进行额外训练或微调。 与现有扩散模型兼容:可集成到任何现有的扩散模型中,增强编辑和生成能力,适用于 Stable Diffusion XL、Kandinsky 和 DeepFloyd IF 等不同的扩散模型。 主要功能特点: 精细的编辑控制:通过引入变化地图,可对图像每个像素或区域指定不同变化程度,支持离散和连续编辑。 文本驱动的图像修改:通过文本提示指导图像修改方向。 软填充技术:在填补图像空白或修复部分时,能细微调整周围区域确保无缝融合。 Dify 接入企业微信教程: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-03-29
dify学习
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。具有强大的工作流构建工具,支持广泛的模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 部署选项:提供云服务和本地部署,满足不同用户需求。 开源特性:确保对数据的完全控制和快速产品迭代。 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 推荐使用方式:个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-03-28
coze的智能体如何接入微信?
要将 Coze 智能体接入微信,可按以下步骤操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,可以看到运行的是两个服务。 2. 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效作为过期时间,指定团队空间,勾选所有权限。保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏 bot/之后的数据就是该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 绑定微信:准备一个闲置的微信,点击容器,点击“wcandyaibot”后面的日志按钮,用提前预备好的微信进行扫码。手动刷新界面,点击“刷新日志”,若看到 WeChat login success,即表示微信登录成功。为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,若显示“wechat login seccess”则表示微信正常登录中。 6. 效果测试:把绑定的微信号拉到群里或者单独对话,训练的数据越好,对话效果越好。
2025-04-11
怎么搭建微信机器人?
以下是搭建微信机器人的步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。 2. 如果想为这个 AI 赋予提示词,可以返回相应步骤进行更改。例如在“目录 4 里的第 17 步”或“第三章,第 7 步”,其中双引号内的 value 部分,便是设置 AI 提示词的地方。 3. 此后,进行任何更改,都需要重新打印登陆二维码。并且一个月内,不要上来就加好友、最好不要私聊聊天。 4. 报错"wxsid"是因为微信未实名,实名即可解决。 5. 如果没有手机登录,可以使用夜神模拟器模拟手机登录。 6. 重新在“文件”的【终端】里,直接输入 nohup python3 app.py&tail f nohup.out 重新扫码登录。 7. 多次重新登录后,就在宝塔“首页右上角点击重启,重启一下服务器”,清理进程。 8. 熟悉 linux 操作的话,也可以通过重启进程的方式来重启服务。 9. 如果想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 此外: 1. Link AI 提供的 100 个,合计 3500 万 GPT3.5 Token 的礼品码。可以用来实现画图、搜索、识图等功能,COW 插件里几乎都支持使用 LinkAI 平台。完成机器人搭建,机器人拉群里,领兑换码。 2. 添加微信,拉您进机器人群,先行体验。 如果您仍旧遇到问题,可以先查询社区知识库,或者加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可以加 Stuart 个人微信询问。
2025-04-11
微信机器人如何配置
微信机器人的配置步骤如下: 1. sum4all 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 sum4all 插件目录下的 config.json.template,复制并粘贴重命名为:config.json 注册并获取 sum4all key:https://pro.sum4all.site/register?aff=T6rP ,新用户注册有送免费额度,大家先使用这个进行试用,后续可改为自己的 openAI key。 把复制的 key,粘贴到 sum4all 的 config.json 文件内。(上方有功能阐述,你想要哪个,就把哪个改成 ture) 2. Apilot 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 Apilot 文件下的 config.json.template,复制并粘贴重命名为:config.json 去 https://admin.alapi.cn/account/center 注册,并复制 key 把复制来的 key,粘贴进入。保存。 3. 分段对话配置替换 找到这个路径:/root/chatgptonwechat/channel/wechat,直接下载以下文件进行替换。 此外,微信的配置相对较简单,只需要主项目的 config.json 文件看看是否有"channel_type"参数,参数值为:"wx",即:"channel_type":"wx"。完成以上所有配置部分后,可以准备启动步骤了: 使用 nohup 命令在后台运行程序。 执行完启动脚本,等待 30s 左右,会看到终端有一个微信登录的二维码,微信扫码登录。 如果您想使用更多辅助功能,比如使用总结文件能力,总结网页内容能力,此时需要安装各种插件。这部分配置查看插件配置管理部分。
2025-04-10
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14