Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是提示词工程?有什么重要作用?普通人学习提示词工程的意义有哪些

Answer

提示词工程是人工智能领域,特别是在自然语言处理和大型语言模型的背景下的一个相对较新的概念。

它涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。其关键点包括精确性、创造性、迭代以及对上下文的理解。

提示词通常指直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。而提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能,以及创造性地探索模型的潜在应用。

例如,通过简单的提示词可以获得大量结果,但结果质量与提供的信息数量和完善度有关。一个提示词可以包含指令、问题、上下文、输入或示例等元素,以更好地指导模型获得更好的结果。像在 OpenAI 的相关模型中,可以使用不同角色来构建 prompt。从示例中可以看出,语言模型能基于给出的上下文内容完成续写,通过改进提示词能获得更好的结果。

对于普通人来说,学习提示词工程具有以下意义:

  1. 能够更好地与 AI 模型进行交互,获得更符合需求的结果。
  2. 有助于提升在文本概括、数学推理、代码生成等各种高级任务中的效率和质量。
  3. 加深对大型语言模型能力和局限性的理解,从而更有效地利用相关技术。

提示工程指南是由 DAIR.AI 发起的项目,旨在帮助研发和行业内相关人员了解提示工程,传播 AI 技术和研究成果。研究人员可利用提示工程提升大语言模型处理复杂任务场景的能力,开发人员可通过其设计、研发强大的工程技术,实现和大语言模型或其他生态工具的高效接轨。提示工程包含了与大语言模型交互和研发的各种技能和技术,在实现和大语言模型交互、对接,以及理解其能力方面都起着重要作用,还能用于提高模型的安全性,借助专业领域知识和外部工具来增强模型能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

基本概念

您可以通过简单的提示词(Prompts)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的_指令_或_问题_等信息,也可以包含其他详细信息,如_上下文_、_输入_或_示例_等。您可以通过这些元素来更好地指导模型,并因此获得更好的结果。看下面一个简单的示例:提示词输出结果如果使用的是OpenAI Playground或者其他任何LLM Playground,则可以提示模型,如以下屏幕截图所示:需要注意的是,当使用OpenAI的gpt-4或者gpt-3.5-turbo等聊天模型时,您可以使用三个不同的角色来构建prompt:system、user和assistant。其中system不是必需的,但有助于设定assistant的整体行为,帮助模型了解用户的需求,并根据这些需求提供相应的响应。上面的示例仅包含一条user消息,您可以使用user消息直接作为prompt。为简单起见,本指南所有示例(除非明确提及)将仅使用user消息来作为gpt-3.5-turbo模型的prompt。上面示例中assistant的消息是模型的响应。您还可以定义assistant消息来传递模型所需行为的示例。您可以在[此处(opens in a new tab)](https://www.promptingguide.ai/models/chatgpt)了解有关使用聊天模型的更多信息。从上面的提示示例中可以看出,语言模型能够基于我们给出的上下文内容`"The sky is"完成续写。而输出的结果可能是出人意料的,或远高于我们的任务要求。但是,我们可以通过改进提示词来获得更好的结果。让我们试着改进以下:提示词输出结果结果是不是要好一些了?本例中,我们告知模型去完善句子,因此输出的结果和我们最初的输入是完全符合的。提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。以上示例基本说明了现阶段的大语言模型能够发挥的功能作用。它们可以用于执行各种高级任务,如文本概括、数学推理、代码生成等。

问:什么是提示工程?与提示词有什么区别?

提示工程(Prompt Engineering)是人工智能领域中,特别是在自然语言处理(NLP)和大型语言模型(LLMs)的上下文中,一个相对较新的概念。它涉及设计和优化输入提示(prompts),以引导AI模型生成特定类型的输出或执行特定的任务。[heading3]提示工程的关键点包括:[content]1.精确性:通过精确的提示,可以提高AI模型输出的相关性和准确性。2.创造性:提示工程需要创造性地思考如何构建问题或请求,以激发AI模型的特定能力。3.迭代:通常需要多次尝试和调整提示,以获得最佳结果。4.上下文理解:提示需要包含足够的上下文信息,以便AI模型能够理解并执行所需的任务。[heading3]提示词(Prompts):[content]提示词通常指的是直接输入到AI模型中的问题、请求或指示,它们是提示工程的一部分。提示词可以非常简单,如“给我总结这篇文章的主要观点”,或者更复杂,如设计一个包含多个步骤和条件的复杂任务。[heading3]与提示工程的区别:[content]提示词是实际输入到AI系统中的具体文本,用以引导模型的输出。提示工程则是一个更广泛的概念,它不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化AI模型的效用和性能,而提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对AI模型的深入分析、用户研究、以及对特定任务的定制化提示设计。内容由AI大模型生成,请仔细甄别。

提示工程指南

提示工程指南(Prompt Engineering Guide)是由[DAIR.AI(opens in a new tab)](https://github.com/dair-ai)发起的项目,旨在帮助研发和行业内相关人员了解提示工程。以传播AI技术和研究成果为目标,DAIR.AI的愿景是赋能新一代AI领域的创新者。本目录内容翻译自:https://www.promptingguide.ai/提示工程(Prompt Engineering)是一门较新的学科,关注提示词开发和优化,帮助用户将大语言模型(Large Language Model,LLM)用于各场景和研究领域。掌握了提示工程相关技能将有助于用户更好地了解大型语言模型的能力和局限性。研究人员可利用提示工程来提升大语言模型处理复杂任务场景的能力,如问答和算术推理能力。开发人员可通过提示工程设计、研发强大的工程技术,实现和大语言模型或其他生态工具的高效接轨。提示工程不仅仅是关于设计和研发提示词。它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着重要作用。用户可以通过提示工程来提高大语言模型的安全性,也可以赋能大语言模型,比如借助专业领域知识和外部工具来增强大语言模型能力。基于对大语言模型的浓厚兴趣,我们编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。[Prompt-Engineering-Lecture-Elvis.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/HNwJblqwZodlBOxqsXrcCsTDnid?allow_redirect=1)

Others are asking
撰写lisp语法风格提示词的教程
以下是一份关于 Lisp 语法风格提示词的教程: Lisp 是一门“古老”的编程语言,其语法核心是 List 结构,也叫“S 表达式”,典型特征是用一对括号把元素括起来,并且 List 结构里可以嵌套 List,使得程序呈现出多层括号嵌套的样子。Lisp 语法简洁且优美,具有很强的表达能力。 在提示词编程方面,李继刚写的提示词有用 Lisp 语言编写的例子。用 Lisp 写提示词具有一些特点和优势: 1. SVG 图形的丰富度和表现力可能优于 Markdown 版本。 2. 执行过程会输出中间“思考”过程,方便调试优化流程,能看到哪些步骤生成有用信息,哪些无用,还可能从中获得新灵感。 但平时写提示词用的更多的是 Markdown 语法,它简单且大语言模型能很好“理解”。对比两者,在多数场景下,从文本处理后的输出结果可能看不出太大差异,但逐步思考有正向收益。 在“情绪价值营销”中,可以用 Lisp 构建 prompt,让 Claude 直接根据用户输入输出情绪营销语句。用 Lisp 这种编程语言在 prompt 圈曾被带火,其更为凝练和简洁。当然,用 Markdown 格式写 prompt 效果也一样。 使用 Lisp 格式 prompt 时(Claude 专用),需要注意一些事项。例如,对于 GPT 等模型在卡片生成这步需要进行一些调整,不稳定,最好自定义 html/css 样式来进行强约束。使用时,直接打开 Claude 首页,发送上述提示词进行初始化,然后即可使用。
2025-03-13
你帮我找找能够生成提示词的提示词,不要是那个ai会话的,是文本生成的
以下是一些关于生成文本生成提示词的相关信息: OpenAI API 可应用于多种自然语言、代码或图像生成任务,提供不同能力级别的模型,可微调自定义模型,模型通过将文本分解为标记(Token)来理解和处理文本。 设计提示词本质上是对模型进行“编程”,可通过提供指令或示例完成,适用于内容或代码生成、摘要、扩展、对话、创意写作、风格转换等任务。 在 OpenAI Playground 中,有可选的模型、提示词结构、温度等参数。提示词结构区分了 SYSTEM 和 USER 对话框,SYSTEM 可用于控制角色设定。温度控制生成文本的随机性,取值 0 到 2 之间,0 时结果确定无聊,过高则可能输出乱码。 关于生成提示词的工具,推荐顺序为 chatGPT 4.0、kimichat、智谱清言 4 等。对于文本纠错,可使用飞书文档自带纠错功能或通过 prompt 让大模型检查并改正。对于国产大模型,智谱和文心等可以文生图。
2025-03-13
你帮我找一找能够生成提示词的提示词!
以下是为您找到的一些能够生成提示词的相关内容: 1. Midjourney 提示词生成器:仿照 GPTs 里的 MJ prompt 改了一版提示词,可用于 coze 或其他国内的 agent。方便之处在于若提示词懒得写全,可让 agent 补全润色,粘贴即可。例如“一个巨大鲸鱼头部的特写,鲸鱼的眼睛显示疲惫的神情,一个小女孩站在鲸鱼的旁边抚摸鲸鱼的脸,小女孩占画面比例很小,体现鲸鱼的巨大,吉卜力工作室风格”等。 2. 【SD】自动写提示词脚本 One Button Prompt:在插件下方可添加提示词增加控制,如规定所画必须是猫或标准化质量提示词。设定主题如“人物”“风景”等,在“工作流协助”中点击“生成一些提示词”,会随机生成多段提示词,可任选发送到上方生成,还能对提示词修改调整。 3. 在对文心一言 4.0、智谱清言、KimiChat 等的小样本测评中,设置了让模型生成能根据用户需求写出合适的 RPG 游戏策划(包括角色、剧情、玩法和场景等内容)的提示词的任务。
2025-03-13
改文案提示词
以下是关于改文案提示词的相关内容: 景淮:新春贺卡制作(中文版本)GPTs 实战 文案生成:先从生成元旦文案开始测试,不增加限制观察效果,效果不佳时增加字数、换行符和每句话的限制,给予少样本后效果好转。 生成文字图片调试:修改圣诞贺卡提示词中的文字为元旦贺卡,运行后发现图片中文字分割问题,多次对话调整,对生成的文本进行限制,如在每句话末尾加换行符,调整 Python 代码和文字大小。 提示词编写测试:整合调整圣诞节贺卡的提示词,因甲方要求新增“字体选择”功能,并提供 GPTs 体验链接和生成效果图。 ChatGPT 给 DALL·E 3 优化提示词的元提示 不改变表情包、虚构角色起源或未见过的人物,保持原始提示意图,优先保证质量。 不创建任何冒犯性的图像。 对于存在传统偏见问题的场景,确保关键特征如性别和种族以无偏见的方式指定。 对包含特定人物或名人名字、暗示或参考的描述进行修改,除非作为文本出现在图像中。 提示词必须详细、客观地描述图像的每个部分。 SD 新手:入门图文教程 按想画的内容写提示词,多个提示词用英文半角逗号分隔。 概念性、大范围、风格化的关键词写在前,叙述画面内容的其次,细节的最后。 模型中每个词的权重可能不同,特异性和具体的措辞更有效。 可用括号人工修改提示词权重。
2025-03-13
请生成一段提示词,用于模特佩戴翡翠珠宝饰品的效果图
以下是一段用于模特佩戴翡翠珠宝饰品的效果图的提示词: breathtaking cinematic photo, masterpiece, best quality, , blonde hair, carrying a light green bag, standing, full body, detailed face, big eyes, detailed hands, wearing a jade jewelry set, fashion photography, studio light,.35mm photograph, film, bokeh, professional, 4k, highly detailed. awardwinning, professional, highly detailed. Negative prompt: ugly, disfigured, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
2025-03-13
可灵视频提示词怎么写
以下是关于可灵视频提示词的写法: 1. 上传基础视频: 点击页面下方的【Pikaddition】按钮。 拖拽或点击上传本地视频。 若自己没有视频,可在“templates”板块使用官方示例视频做测试。 2. 添加主角图片:点击【Upload Image】上传角色图片文件。 3. 编写视频提示词: 若需要参考角色在视频里的相关互动,需在输入框用英文描述期望效果(支持 Emoji 辅助),然后点击生成按钮。 Pika 会提供一段默认 prompt,若无特殊想法,可直接使用。 建议在自己的提示词尾部加入官方提供的默认提示词,效果会更好。 提示词公式参考: 事件驱动句式:As... 空间锁定技巧:使用场景物体作坐标轴:on the.../behind the.../from the... 动态呼应原则:角色动作与视频元素联动:swaying with.../reacting to.../matching... 核心逻辑:Pikadditions 的核心功能是用户上传实拍视频和角色图片,AI 将角色动态融入视频中。因此,提示词需要具体描述角色在视频中的动作、互动和场景匹配。 此外,对于 Adobe Firefly 的提示词技巧: 明确且具体描述,尽量使用更多词汇来具体描述光线、摄影、色彩、氛围和美学风格。 提示词公式:镜头类型描述+角色+动作+地点+美学风格。 镜头类型描述:相机的视角是什么?它是如何移动的?示例:“一个特写镜头,缓慢推近。” 角色描述:角色是谁?他们长什么样子?他们穿着什么?他们的情绪如何?示例:“一只体型庞大的北极熊,拥有明亮的白色毛皮,看起来若有所思。” 动作:角色在场景中做什么?示例:“北极熊正轻柔而自信地走向它之前在冰面上打开的一个洞,准备在冰面下捕猎。” 地点:角色在哪里?天气如何?地形是怎样的?示例:“地点是一片荒凉的雪地;远处灰蒙蒙的云朵缓慢移动。” 美学风格:这是什么类型的镜头?氛围是怎样的?景深如何?示例:“电影感、35mm 胶片、细节丰富、浅景深、散景效果。” 构建提示词时,建议限制主题数量,过多的主题(超过四个)可能会让 Firefly 感到困惑。
2025-03-12
懂编程但是不了解大模型的工程师如何系统的学习深度学习?
对于懂编程但不了解大模型的工程师,系统学习深度学习可以参考以下路径: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程推荐吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 参考相关资源,如 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 运用相关开源工具,如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为了更好地理解相关技术原理和建立框架,还可以了解以下内容: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-03-13
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
提示词工程
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 提示词工程师的主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标(如模型的准确率、流畅度和相关性等)评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例:无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其实现原理主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 在基本概念方面,您可以通过简单的提示词获得大量结果,但结果质量与提供的信息数量和完善度有关。一个提示词可以包含传递到模型的指令、问题等信息,也可以包含上下文、输入或示例等详细信息。通过这些元素能更好地指导模型并获得更好的结果。当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同角色来构建 prompt,system 有助于设定 assistant 的整体行为。提示工程就是探讨如何设计出最佳提示词,用于指导语言模型高效完成某项任务。以上示例基本说明了现阶段的大语言模型能够执行各种高级任务,如文本概括、数学推理、代码生成等。
2025-03-12
AI音乐的工程文件如何获取
以下是获取 AI 音乐工程文件的一些方法: 1. 参考自媒体链接【用 AI 生成并发行自己的音乐哔哩哔哩】https://b23.tv/ouHfhfM 中的教程。其中提到: 导出时间轴歌词:使用剪映,其相关功能位置可参考视频中的介绍。 音乐分轨:可使用腾讯 QQ 音乐旗下的 TME Studio,网站链接为 https://y.qq.com/tme_studio/,支持一键分轨并导出全部音频文件。 对于没有编曲经验的小白,可以通过电脑录屏工具录制歌曲的工程文件来提供创作证明。 2. 生成 MID 文件: 把源文件放在 input 文件夹(支持 MP3,WAV),可以直接用 vs code 运行 start.py,也可以右键点击文件夹空白,打开 Powershell 窗口输入在 cmd 环境运行。 原始的 start.py 代码里是默认 cuda 运行的,如果用 cpu 跑,需把里面的 cuda 改成 cpu。转谱完成后,在 output 文件夹找到对应的 mid 文件。 检查乐谱时,目前测试下来主旋律基本能还原,但可能存在噪声被识别成音符等错误,需要具备一定乐理知识去修复。 重奏输出可使用修谱和重奏软件 Musehub 中的 Muse Score,支持导出多种常用音频编辑格式和高清输出。 3. 通过 Coze 应用获取: 创建一个 Coze,在“用户界面”拖入一个 markdown 组件。 在 markdown 中写入 html,对于不懂前端的同学可使用智谱清言等 AI 工具生成源码。 调整代码获取在线音乐,将 markdown 自带内容删除,写入代码,再从在线音乐播放平台获取歌曲的 url 复制进代码,刷新开发页面即可。
2025-03-11
是否有可以免费使用的机械工程领域的AI大模型
目前有可以免费使用的机械工程领域相关的 AI 编程工具 Trae。 Trae 具有以下特点: 1. 国内版使用国内模型,连接稳定快速,界面根据国内用户习惯定制。 2. 内置豆包 1.5 pro、DeepSeek 满血版、Claude 3.5 等大模型,可无限量免费使用。 3. 具有完整的 IDE 功能,如代码编写、项目管理、插件管理、源代码管理等,并提供智能问答、实时代码建议、代码片段生成、从 0 到 1 开发项目等功能。 4. 全中文界面,支持 Windows 和 MacOS 系统,操作界面简洁直观,即使是技术小白也能快速上手。 5. 内置顶级 AI 模型免费畅享,如 Claude 3.5 和 GPT4o,完全免费且不限使用次数。 下载链接:https://sourl.co/2DCmmW 官方说明文档:https://docs.trae.ai/docs
2025-03-07
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
普通人怎么用Ai
普通人使用 AI 可以从以下几个方面入手: 1. 基础使用:在日常使用软件和电子设备时,可能会不知不觉接触到 AI 功能,例如微信和百度中的 AI 自动搜索整理的答案。 2. 简单需求:对于常见需求如翻译,可使用现成的 AI 翻译工具。 3. 特定需求:若有特殊要求,如特定翻译风格,可自己撰写提示词给 AI 进行专门说明。 4. 高级定制: 若希望翻译输入能自动参考个人数据文档并输出到微信平台,需开发自己的智能体。 若希望智能体与其他智能体协作完成一系列工作,可搭建多智能体工作流系统。 若发现现有 AI 模型缺少专业词汇知识,可自己训练 AI 模型。 在使用 AI 时,最基础且重要的两点是: 1. 尽可能给它提供背景信息。 2. 尽可能让它自己去反思,以确保每次输出的内容都经过再次思考。 另外,普通人想利用 AI 提效,重点不是学会写提示词,而是将现有的 AI 工具融入到自己的工作流中。随着发展,一方面提示词门槛可能越来越高,另一方面 AIGC 产品会越来越多且细致,普通人可能只需在市面上找到对应产品填空就能解决需求。
2025-03-12
普通人除了卖课,如何能够搭乘ai快车,进行变现
对于普通人而言,除了卖课,还有以下几种方式可以搭乘 AI 快车实现变现: 1. 利用 AI 工具进行内容创作,如写作、绘画、视频制作等,并在相关平台上获取收益。 2. 为企业提供基于 AI 的数据分析和处理服务。 3. 开发简单的 AI 应用程序或小程序,通过收费使用或广告盈利。 4. 利用 AI 优化电商运营,例如精准选品、智能客服等,从而提高销售业绩。 5. 参与 AI 项目的众包工作,如数据标注、模型测试等获取报酬。
2025-03-12
你觉得作为一个普通人,应该怎样更高效的使用AI,并且保持跟上AI快速迭代的节奏?
作为普通人,要更高效地使用 AI 并跟上其快速迭代的节奏,可以参考以下策略: 1. 提前布局职业生涯:审视自身所处行业和岗位,预估 5 10 年后被 AI 取代的程度。若风险高,即刻学习新技能并向更有前景的领域转型;若风险低,思考如何在 AI 辅助下将工作做到极致。 2. 投入 AI 浪潮:敢于使用和研究 AI,将其融入业务,哪怕从简单应用开始,实践中发现新机会点。 3. 强化不可替代的人类技能:如创意、沟通、领导、跨领域知识、独特专长等。 4. 建立个人品牌和网络:通过分享专业见解、持续学习输出内容,在业界建立口碑,积累人脉和声望。 5. 拥抱创业和多元收入:利用 AI 降低的创业门槛,发展副业或项目,探索多种可能性,经营多元身份提升抗风险能力。 6. 保持健康的身心:学会调适心态,持续锻炼身体,以良好的身心状态应对挑战。 此外,在 AI 时代,持续学习能力与适应力是最重要的个人能力之一。要培养自己成为终身学习者,保持好奇心,定期涉猎新领域的知识或课程,锻炼自学能力,勇于打破舒适区。同时,要在心理上拥抱变化,将其视为机遇而非威胁,培养心理韧性,以积极的心态应对不确定性。 在监管方面,英国采用了基于原则的框架,其监管体制具有创新、适度、可信、适应、清晰和协作等特点,旨在促进创新的同时平衡风险与机遇,加强在 AI 领域的全球领导地位。
2025-03-09
普通人打工人AI制作短视频,请给出具体执行步骤
以下是普通人利用 AI 制作短视频的具体执行步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,制作一部 2 分钟短片,不论是使用镜头拍摄还是使用 AI 工具生成,本质上都脱离不了影视制作的基础逻辑。在角色设计阶段,需要保持角色的一致性,并为角色增加个性化特性。在分镜图片生成阶段,为了及时调整分镜画面,决定生成一张合适的图片就直接开始进行对应动画镜头的生成。在动画镜头制作阶段,主要使用了 pixverse、pika、runway 三种视频生成工具。我们这里讲的短片都是以短故事片为主,后续也会带领大家讨论广告片等不是以故事为主要基底的影片类型。
2025-03-07
学习ai对普通人的生活有什么意义
学习 AI 对普通人的生活具有多方面的重要意义: 1. 提供更高效的个人助理服务:人工智能模型将很快能作为自主的个人助理,代表您执行特定任务,如帮助协调医疗护理。 2. 促进教育方式的变革:人工智能工具在教育领域有创新的应用空间,如通过交流互动辅助学习,但需要正确引导使用,避免过度依赖。 3. 助力艺术创作:在艺术领域,人们可以与计算机合作作画,发挥自身的创造力。 4. 提高工作效率:普通人可以通过合适的软件和学习内容,运用 AI 来提升工作效率。 5. 带来科技便利与幸福:AI 是未来的必然方向,简单试用能让普通人更快受益,使生活因科技而更加便利和幸福。 然而,在推广 AI 的过程中也面临一些挑战,如需要降低计算成本以使其更加普及,避免其成为有限资源导致战争或成为富人的工具。同时,要正确引导使用,避免其带来负面影响。
2025-03-05
普通人如何学AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,想要学习或了解 AI,好的信息源如「即刻」App 的“”等免费圈子。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 如果您还在观望 AI,不知道从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。学习资源都是免费开源的。
2025-03-05
学习智能体搭建应该从哪里开始?
学习智能体搭建可以从以下几个方面开始: 1. 利用相关平台:例如 Coze、Dify 等 AI 智能体编排平台,它们降低了制作智能体的门槛。 2. 输入人设等信息:创建智能体时,输入相关人设等基础信息,并配置相关工作流。 3. 体验常见工具:对于没有编程基础但对 AI 有一定概念的小白,可以从工具入门篇开始,如 Agent 工具 小白的 Coze 之旅。 4. 参考优秀案例:可以获取现成好用的 Prompt 案例,直接复制、粘贴使用。 5. 了解相关教程:如阅读等详细讲解搭建步骤的文章。
2025-03-13
有什么软件或者网站可以学习文档,然后根据文档内容生成完整的python代码程序的吗?免费的
以下是一些可以学习文档并根据文档内容生成完整 Python 代码程序的免费软件或网站: 1. :这是一个开源的 AI 开发助手,能根据产品需求生成完整的代码库,代码具有简单、安全、易于理解的结构,具备高度灵活性和定制性,适合开发人员使用。 2. 直接使用。
2025-03-13
有什么ai助手可以学习文档,然后根据文档内容生成完整的python代码程序的吗?
以下是一些可以学习文档并生成完整 Python 代码程序的 AI 助手: 1. Wing Python IDE Pro:由 Wingware 开发的专为 Python 编程设计的开发环境,集成了代码编辑、导航和调试功能,具备智能自动补全、代码重构、多选功能和代码片段工具。价格:年度许可证起价 179 美元/月。 2. Smol Developer:开源的 AI 开发助手,可以根据产品需求生成完整的代码库,具备简单、安全、易于理解的代码结构,同时高度灵活和定制。价格:开源项目,遵循 MIT 许可证。 3. Cody:Sourcegraph 的 AI 工具,能理解整个代码库,解答问题并编写代码,还能详细解释代码,定位特定组件,并提出修复建议。可通过 VS Code 扩展直接使用,个人使用免费。 4. FittenAI 编程助手:安装前需先安装 Python 的运行环境,安装步骤为点击左上角的 FileSettingsPluginsMarketplace。安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。其功能包括智能补全(按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议)、AI 问答(通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行对话)、自动生成代码(Fitten Code 工具栏中选择“Fitten Code生成代码”,然后在输入框中输入指令即可生成代码)、代码转换(选中需要进行翻译的代码段,右键选择“Fitten Code–编辑代码”,然后在输入框中输入需求即可完成转换)。
2025-03-13
从零开始的话,从哪开始学习和上手
如果您想从零开始学习 AI 并上手,以下是一些建议: 1. 阅读相关论文和博客:可以从“GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List”开始,其中涵盖了人工智能工程的多个领域,如 LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调等。 2. 学习 Prompt(提示词)技巧:掌握“分配角色”“给出示例(fewshots)”“思维链(ChainofThought)”这三板斧,深入研究这三个核心方面。 3. 了解 Stable Diffusion:通过知乎上的“教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识”,学习其资源、核心基础原理、网络结构、搭建使用和训练等方面的知识,包括模型工作流程、核心网络结构、推理流程、训练环境配置等。
2025-03-13
AI如何学习,请给我具体的学习路线、视频和书籍
以下是为您提供的 AI 学习路线、视频和书籍的相关内容: 学习路线: 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 开始 AI 学习之旅:在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习,同时掌握提示词的技巧。 4. 实践和尝试:理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 视频: 1. 大量阅读。 书籍: 1. 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译。 2. 关于介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。
2025-03-13