Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么开始学习AI使用课程?

Answer

以下是关于如何开始学习 AI 使用课程的建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
  6. 微软相关课程:
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

微软AI初学者入门课程

如需了解云计算中的人工智能主题,可以考虑参加《[在Azure上开始使用人工智能](https://learn.microsoft.com/en-us/training/paths/get-started-with-artificial-intelligence-on-azure/?WT.mc_id=academic-77998-cacaste)》课程。[heading1]课程列表[content](待更新)|编号|课程|介绍|PyTorch|Keras/TensorFlow|实验||-|-|-|-|-|-||I|人工智能导论|人工智能导论|人工智能导论|人工智能导论|人工智能导论||1|人工智能简介和历史|[讲义](https://waytoagi.feishu.cn/wiki/HbhhwapFoiVgs1kk1TIcV3a7nzd)|||||II|符号人工智能|符号人工智能|符号人工智能|符号人工智能|符号人工智能||2|知识表示和专家系统|[讲义](https://waytoagi.feishu.cn/wiki/SBH5wXRnPi6ZRYkjplVcRTRPnJh)|[专家系统](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/Animals.ipynb)<br>[本体](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/FamilyOntology.ipynb)<br>[概念图](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/MSConceptGraph.ipynb)|||

微软AI初学者入门课程

人工智能的商业应用案例。如需要了解这方面的信息,可以考虑学习以下两个微软的课程:《[面向商业用户的人工智能学习](https://learn.microsoft.com/en-us/training/paths/introduction-ai-for-business-users/?WT.mc_id=academic-77998-cacaste)》、《[人工智能商学院](https://learn.microsoft.com/en-us/training/paths/transform-your-business-with-microsoft-ai/)》(和欧洲工商管理学院INSEAD共同开发)。经典机器学习。这在我们的《[机器学习入门课程](https://github.com/Microsoft/ML-for-Beginners)》中有详细介绍。使用Azure认知服务(Azure Cognitive Services)来创建实用的人工智能应用。如有需要,我们建议你从以下微软课程开始学习:《[视觉](https://learn.microsoft.com/en-us/training/paths/create-computer-vision-solutions-azure-ai/?WT.mc_id=academic-77998-cacaste)》、《[自然语言处理](https://learn.microsoft.com/en-us/training/paths/explore-natural-language-processing/?WT.mc_id=academic-77998-cacaste)》、《[使用Azure OpenAI服务的生成式人工智能](https://learn.microsoft.com/en-us/training/paths/develop-ai-solutions-azure-openai/?WT.mc_id=academic-77998-bethanycheum)》等。

Others are asking
百度的ai大模型免费的新闻?
以下是关于百度 AI 大模型免费的相关新闻: 2024 年 5 月 21 日,阿里云宣布通义千问主力模型 QwenLong 的 API 输入价格大幅下降,同时下午百度宣布文心大模型两大主力模型全面免费。 2024 年 2 月 13 日,百度宣布文心一言将全面免费,AI 价格战加剧。
2025-03-17
你能给我一些论文降aicg率的指令吗,我论文AICG率太高了
很抱歉,所提供的内容中没有直接关于论文降 AICG 率的指令。但一般来说,降低论文的重复率可以通过以下方法: 1. 重新表述:对原文中的语句进行重新组织和表达,避免直接复制粘贴。 2. 增加引用:合理引用权威文献,并正确标注引用格式。 3. 深入研究:对相关主题进行更深入的探讨,提供独特的观点和分析。 4. 检查修改:使用专业的查重工具,对论文进行多次检查和修改。
2025-03-17
AI模型微调
以下是关于 AI 模型微调的全面介绍: 介绍: 微调可让您从 API 提供的模型中获得更多收益,包括比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练更多示例改进小样本学习,在大量任务中取得更好结果。对模型进行微调后,不再需要在提示中提供示例,节省成本并实现更低延迟请求。 哪些模型可以微调: 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。 安装: 建议使用 OpenAI 命令行界面。要安装,运行(以下说明适用于 0.9.4 及更高版本。此外,OpenAI CLI 需要 python 3。),通过设置环境变量 OPENAI_API_KEY 来准备。 创建微调模型: 假设已准备好训练数据,使用 OpenAI CLI 开始微调工作。从 ada、babbage、curie 或 davinci 等基本模型开始,可使用后缀参数自定义微调模型的名称。运行命令会上传文件、创建微调作业、流式传输事件直到作业完成。每个微调工作默认从 curie 基本模型开始,模型选择影响性能和成本。开始微调作业后,可能需要几分钟到几小时完成,若事件流中断可恢复。除创建作业外,还可列出现有作业、检索作业状态或取消作业。
2025-03-17
目前的AI能力在制造型企业中的应用有哪些方向
目前 AI 在制造型企业中的应用方向主要包括以下几个方面: 1. 预测性维护:利用 AI 预测机器故障,避免工厂停机。 2. 质量控制:通过检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,提高效率并降低成本。 4. 机器人自动化:控制工业机器人,提高生产效率。 5. 产品设计和开发:借助 AI 生成工具快速生成产品的 3D 模型、渲染图、插图等设计元素,提高设计效率。 6. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案。 7. 设备维护和故障诊断:分析设备运行数据,预测设备故障并生成维修建议,增强设备可靠性。 8. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,改善客户体验。 总的来说,AI 技术正在制造业的各个环节得到广泛应用,从产品设计到生产管理再到客户服务,都能显著提高企业的效率和竞争力。
2025-03-17
我是美区Tiktok shop 的卖家,希望AI用图片生成带货短视频
以下是利用 AI 用图片生成带货短视频的步骤: 1. 添加产品/介绍背景:如果有自己的视频/图片素材,可以直接使用;若没有产品背景/产品介绍,可以根据搜索添加。 2. 扣像结合背景:在剪映里面把数字人扣下来,导入视频,点击画面选择抠像,点击智能扣像,调整到合适的大小和位置。 3. 添加字幕和音乐:智能识别字幕,可搜索添加音乐或手动添加自己喜欢的音乐。 这样就可以根据您的需求结合您的图片生成您需要的视频,用于带货或讲解产品。如果应用在直播也是可以的,把视频做长些即可,但直播可能需要收费,短视频可以通过购买邮箱注册使用免费的时长或直接购买会员版。
2025-03-17
更通用一点,更落地一点,主题换成学习AI&LLM吧
以下是关于学习 AI&LLM 的相关知识: 一、AI 相关概念与技术 1. 概念 生成式 AI 生成的内容称为 AIGC。 AI 即人工智能。 2. 机器学习 电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 3. 深度学习 一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度)。 神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型) 对于生成式 AI,生成图像的扩散模型不是大语言模型。 对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 二、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 三、RL 与 LLM 融合的本质与阐释 AI 本质是一堆 scaling law。今天能看到最好的模型规模在 10 的 25 到 26 次方 FLOPs 这种规模,且数量级还会持续增长,算力是必要条件。一个值得被 scale up 的架构是基础,要支持不断加入更多数据。现在“吃”的是 base model 的 scaling law,未来可能会“吃”用户数据源的 scaling law。alignment 也有 scaling law,只要能找到对的数据就能解决。当 next token prediction 足够好时,能够平衡创造性和事实性。多模态数据的引入可推迟数据瓶颈问题,如视频和多模态的卡点解决不了,文本的数据瓶颈就会很关键。在限定问题(如数学或写代码)上,数据相对好生成,通用问题还没有完全的解法,但有探索方向。统计模型没有问题。
2025-03-17
我想要一个以自己为蓝本,包括人物和声音的数字人,用来录制课程
以下是制作以自己为蓝本,包括人物和声音的数字人用来录制课程的方法: 1. 生成数字人: 在剪映右侧窗口顶部打开“数字人”选项,选取免费且适合的数字人形象,如“婉婉青春”。选择数字人形象时会播放其声音,可判断是否需要,然后点击右下角“添加数字人”将其添加到当前视频中,软件会生成对应音视频并添加到视频轨道中,左下角会提示渲染完成时间,完成后可点击预览按钮查看效果。 2. 增加背景图片: 可删除先前导入的文本内容,为视频增加背景图片。点击左上角“媒体”菜单并点击“导入”按钮选择本地图片上传,如一张书架图片,点击图片右下角加号将其添加到视频轨道上(会覆盖数字人)。为让图片在整个视频播放时都显示,点击轨道最右侧竖线向右拖拽至与视频对齐。 3. 增加字幕: 点击文本智能字幕识别字幕,点击开始识别,软件会自动将文字智能分段并形成字幕。 4. 换脸: 若希望数字人换成自己的面孔,需要用另一个工具进行换脸。 第一步:打开谷歌浏览器,点击链接 https://github.com/facefusion/facefusioncolab 并点击 open colab 进到程序主要运行界面,在右上角点击“代码执行程序”选择“全部运行”,无需安装和付费,点击红框对应的 URL 打开操作界面。 第二步:点击“source”上传自己的照片和“target”上传之前的剪映数字人视频,保持默认参数,点击“START”生成。 第三步:等待专属数字人视频出炉。 有关数字人使用上的问题,欢迎在底部评论区留言交流。同时如果对数字人课程感兴趣,欢迎查看通往 AGI 之路 X AI 沃茨的《克隆你自己》课程: 课程内容: 在线观看第一节:https://www.bilibili.com/video/BV1yw411E7Rt/?spm_id_from=333.999.0.0
2025-03-11
小白入门课程在哪
以下是为您推荐的适合小白入门的 AI 课程: 1. 【野菩萨的 AIGC 资深课】:由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程。课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。您可以扫码添加菩萨老师助理,了解更多信息。 2. 【Agent 共学】相关课程: 元子:小白的 Coze 之旅:https://waytoagi.feishu.cn/wiki/FaT 5 月 8 日大圣分享《Coze 全流程搭建》:https://waytoagi.feishu.cn/wiki/SA7Rw77Y6iDyQDkfmbociFU8nqh 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库:https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent:https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb
2025-03-11
cursor课程
以下是关于“和 Cursor AI 一起学 Python 编程”课程的详细内容: 课程第一节:Python 是什么、Cursor 使用、notebook 远程编程 时间:45 分钟 教学内容: Python 简介:包括 Python 的发展历史、特点,在数据分析和人工智能领域的优势,在人文学科的应用,以及在语言教学和研究中的实际案例。 Cursor 编程环境介绍: 什么是 Cursor:Cursor 是一种结合了 AI 功能的编程编辑器,旨在帮助用户更高效地编写代码。 Cursor 的主要功能和优势:AI 辅助代码补全和生成、实时语法和错误检查、简洁友好的用户界面,适合初学者。 Bohrium 在线编程平台: 什么是 Bohrium:Bohrium 是 AI for Science 的科研学习平台,提供在线编程和丰富的 AI 工具。 利用 Bohrium 中的 Jupyter Notebook 进行远程编程的优势:无需本地环境配置,内置丰富的 AI 和深度学习功能,适合团队协作和教学场景。 实践部分: 熟悉 Cursor 界面:包括安装和设置,指导学生下载安装 Cursor 编辑器,了解界面布局和基本功能。 编写第一个程序:使用 Cursor 编写一个打印“你好,世界!”的简单程序,体验 AI 辅助功能,如代码自动补全和错误提示。 使用进行远程编程:注册和登录,帮助学生注册 Bohrium 账户并登录在线编程平台,在线编写和运行代码,在 Bohrium 上编写同样的“你好,世界!”程序,演示如何在云端运行代码并查看输出。 教学目标: 了解 Python 对于人文学科的意义。 掌握 Cursor 和 Jupyter Notebook 编程环境的基本使用。 能够在本地和云端运行简单的 Python 代码,体验 AI 技术如何辅助编程和学习。 此外,还有相关的宝玉日报提到了 Cursor 的中文教程网站: ,适合想深入了解和学习 Cursor 的用户。
2025-03-09
ai做课程详情页
以下是关于用 AI 做课程详情页的相关信息: B 站 up 主 Nally 的课程免费且每节 15 分钟,内容很棒。 二十四节气相关教程和关键词已开源,可直接复制使用。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,但未详细讲述概念,建议提前了解,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。还提到 AI 视频及其变现方式,以及 confiui 这个工作流工具。 工程生产有很多可控性。AJ 建议大家钻研 AI 视频或 CONF UI 方向,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛,一星期交稿后会汇总剪辑,还提到蘑菇炼丹相关话题。 AJ 介绍以菌菇图形做创意的素材图,鼓励参与活动成为 AI 视频高手。 张翼然副教授的课程“用 AI 为教师减负(3H)”: 课程带你了解手机平板的设备硬件知识,让它成为你的学习利器;移动学习 APP 和方法,帮您提升自己的数字化学习能力;移动设备效率工具,助你养成好习惯,效率提升与挑战自我;移动学习应用平台,掌握如何开展移动教学。 23 年 4 月,苹果 ADE 线下活动在杭州云谷学校。 包含初中语文、初中科学、地理老师等相关课程的视频。 AI 炼丹直播共学课第二节课: 参加由麦乐园和摩达社区发起的 AI 梦一单一世界比赛,须用摩搭平台和麦橘超然模型作为底膜训练 Lora,提交训练好的 Lora 及用其生成的六张以上高质量、展现完整世界观的作品。 作图分三步,一是明确创作主题即锚点,根据 Lora 风格确定创作方向;二是确定主体,联想主体的角色设定;三是增加叙事感,让画面有一到两个及以上角色,制造反差和联想。 好看的图片的构成因素包括构图、色彩以及光影。 构图指在框架或空间内元素的摆放位置、形状、物体形状及纹理等,好的构图能引导观看者并创造和谐平衡。构图分类包括景别(远景、全景、中景、近景、特写)和拍摄视角(俯视、平视、仰视,正面、侧面、背面)。构图要素有主体、陪体、前景、背景、点线面,合理运用可丰富画面。构图方式如点中心构图、九宫格构图、三分法构图、对称构图、对角线构图、曲线构图、框架构图、三角形构图等。在 AI 绘图中,推荐中景及以上景别,全身景别可能需开 AD 跳以确保作图质量。
2025-03-07
Prompts(提示词)| 社区内prompt框架课程收录
以下是关于 Prompt(提示词)的相关内容: 一、Prompt 之道:清晰表达 1. 如何清晰表达 各种框架能帮助您将脑海中的想法通过特定角度描述出来,比如明确要做的事情、背景、目标、任务、数据和输出等。这些框架虽表述不同,但作用相似,能比空想更高效。 您可以在使用框架时,换不同预设角度描述同一物体。例如,去年有人用 langGPT 的框架模拟善解人意的老师讲解任何学科的概念。 2. 拓展阅读 :社区内 prompt 框架课程收录 :各个场景提示词收录 此外,还有李继刚关于文生文中 prompt 的道、术、用的万字说明,相关链接如下: https://mp.weixin.qq.com/s/R8UbrixkKHXE4dnVt0VMvw 豆包网页端:https://www.doubao.com/chat/?channel=browser_landing_page 豆包桌面客户端:
2025-03-06
吴恩达中文课程
以下是关于吴恩达中文课程的相关信息: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 目录: https://github.com/zard1152/deepLearningAI/wiki 介绍: 有两类大语言模型:基础 LLM 和指令微调 LLM。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会进一步使用人类反馈强化学习(RLHF)技术来优化。 原则与技巧: 两个提示的关键原则:尽可能保证下达的指令“清晰、没有歧义”;给大模型思考的时间,以及足够的时间去完成任务。
2025-03-05
我需要的是学习目录,比如 基础--专项---实战等路径
以下是为您提供的 AI 学习目录: 基础部分: 根据电脑硬件和自身财力选择合适的开始方式,包括本地部署(M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑)、在线平台(在线出图和云电脑),不建议一开始就配主机。 熟练使用文生图、图生图,具备一定逻辑思考和推理能力。 掌握数学基础(线性代数、概率论、优化理论等)和编程基础(Python、C++等)。 专项部分: 建炉,针对不同炼丹方式提供炼丹工具的安装教程。 数据集预处理、模型训练以及模型调试及优化。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 实战部分: 通过真实业务场景的项目案例,如研报生成、旅游搭子、即拍即搜等积累实战经验。 模型部署:模型优化、模型服务等。 请注意,以上内容仅供参考,您可以根据自身需求和实际情况进行调整和学习。
2025-03-17
给我一份通往AIGC的学习目录
以下是一份通往 AIGC 的学习目录: 1. AIGC 概述 1.1 GenAI、AIGC 的基本概念 GenAI 的定义、工作原理及应用 典型的 GenAI 产品 AIGC 的定义及创建方式 国内 AIGC 的监管框架 1.2 AIGC 的分类及应用 语言文本生成的模型和代表项目 图像生成的技术和代表项目 音视频生成的方法和代表项目 AIGC 在音乐生成、游戏开发和医疗保健等领域的应用 1.3 AIGC 应用可能引发的风险 内生风险,如算法的不可解释性和不可问责性,代码开源的安全和伦理担忧 数据隐私问题,如数据泄露、匿名化不足、未经授权的数据共享 知识产权风险,如作品侵权、不当竞争 相关法律和规定对 AIGC 的要求 AIGC 滥用可能导致的问题,如虚假信息传播、侵犯隐私 2. AI 赋能教学 从易到难的学习路径 了解 AI 工作原理 尝试各种 AI 工具 学会优化提示词 生成课程资源 解决教学场景 课上师生机共学 促学生正确使用 提升人机共创力 相关主题 AIGC 教育革命:技术原理与课堂实践 AI 从工具到助手赋能教师提升效率与能力 大语言模型的教学潜力:交流技巧与心得 AI 与教育场景融合拓展教学边界与创新场景 AI 与人类智能的共生放大学生思考力塑造深度学习能力 一线教师的 AI 需求与高效工具推荐 AI 赋能课堂的核心逻辑:从理论到应用 解码 AI 教学案例:创新与实践 教学主要负担分析,如备课压力、适应新课标
2025-03-17
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-16
学习MIdjourney
学习 Midjourney 可以采取以下步骤: 1. 注册 Discord 账号并加入 Midjourney 服务器:这是使用 Midjourney 的基础,Midjourney 也推出了在线版本,可以直接使用。 2. 掌握 Midjourney 的提示词(Prompt)结构:了解 Prompt 的基本组成部分,如“主体”“媒介”“环境”等,学习如何构建有效的 Prompt 来生成理想的图像。 3. 熟悉 Midjourney 的常用参数和命令:学习 Midjourney 的各种参数设置,如放大、细节等,掌握常用的 Midjourney 命令,如/imagine、/test 等。 4. 针对不同应用场景练习创作:尝试针对插画、游戏、框架等不同场景进行创作练习,通过实践不断提高 Prompt 编写和图像生成的技巧。 5. 学习他人的优秀作品并进行模仿:观察和学习其他用户的优秀作品,了解他们的 Prompt 技巧,通过模仿练习,提高自己的创作水平。 此外,还可以通过以下方式辅助学习: 训练 Midjourney 的 prompt:把 Midjourney 的官网说明书喂给 GPT,让它根据说明一步步了解机制和结构,给出适合的提示词。如果官网说明更新了,可以自主替换,也可以用这个方法去学习一些其他技能。 参考 Midjourney 官方指南:在私信 Midjourney Bot 使用/imagine 命令,了解更多的 Prompts,学习如何编写基础提示信息,探索如何通过艺术媒介、地点和时期的描述来改变图像。还可以学习如何使用/blend 命令合并图片,上传至少两张图像,然后使用命令加上已上传的图像 ID,调整混合过程中的各种设置。 总的来说,系统地学习 Prompt 编写技巧、熟悉 Midjourney 的功能,并通过大量实践创作,是学习 Midjourney 的有效方法。同时也要善于学习他人的经验,不断提升自己的创作能力。内容由 AI 大模型生成,请仔细甄别。
2025-03-16
一个小白,如何通过咱们这个网站来学习和应用AI,赋能工作,请给出详细的方案,
对于一个小白,通过本网站学习和应用 AI 赋能工作,可以参考以下详细方案: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、在网站中引入 AI 助手 1. 创建大模型问答应用:先通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,来快速搭建一个网站,模拟您的企业官网或者其他站点。 3. 引入 AI 助手:接着通过修改几行代码,实现在网站中引入一个 AI 助手。 4. 增加私有知识:最后可以通过准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助您更好的应对客户咨询。 七、推荐布鲁姆分类法学习路径 应用:深入 分析:大量阅读,理解各知识之间的关系。
2025-03-16
适合客户端使用的 tts 模型有什么
以下是一些适合客户端使用的 TTS 模型: 1. Fish Speech:语音处理接近人类水平,约十五万小时三语数据,对中文支持完美。开发者为 fishaudio,具有亿级参数,高效轻量,可在个人设备上运行和微调,适合作为私人语音助手。详细介绍及更多演示:https://xiaohu.ai/p/10779 ,GitHub:https://github.com/fishaudio/fishspeech 。 2. GPTSoVITS:只需 1 分钟语音即可训练一个自己的 TTS 模型,是一个声音克隆和文本到语音转换的开源 Python RAG 框架。5 秒数据就能模仿,1 分钟的声音数据就能训练出高质量的 TTS 模型,完美克隆声音。支持零样本 TTS、少量样本训练、跨语言支持、易于使用的界面等。GitHub: 。
2025-03-17
我是美区Tiktok shop 的卖家,希望使用AI生成带货短视频
以下是使用 AI 生成美区 TikTok Shop 带货短视频的步骤: 一、用 ChatGPT 生成短视频选题文案 表明身份,描述需求并提出回答要求,以美妆行业为例展开。 二、用 ChatGPT 生产短视频文案 将需求与框架结合,让 ChatGPT 为您生成短视频文案。 三、生成虚拟数字人短视频 1. 打开网站(需科学上网):https://studio.did.com/editor 2. 在右侧文字框输入从 ChatGPT 产生的内容,选择想要的头像。 3. 选择不同的国家和声音。 4. 内容和人像选择好后,点击右上角的“Create Video”,等待生成。 四、虚拟数字人结合产品做视频 1. 添加产品/介绍背景 若有自己的视频/图片素材可直接使用,若无,可根据搜索添加。 2. 扣像结合背景 在剪映中把数字人扣下来,导入视频,点击画面选择抠像,点击智能扣像,调整到合适的大小和位置。 3. 添加字幕和音乐 智能识别字幕。 可搜索添加音乐或手动添加喜欢的音乐。 这样就可以根据您的需求结合图片生成所需的视频,用于带货或讲解产品,也可应用于直播(直播可能收费,短视频可通过购买邮箱注册使用免费时长或直接购买会员版)。
2025-03-17
我需要搭建一个每个人都能使用的知识库
要搭建一个每个人都能使用的知识库,可以考虑使用 GPT 并借助 embeddings 技术。以下是相关步骤和原理: 1. 文本处理:将大文本拆分成若干小文本块(chunk)。 2. 向量转换:通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块,作为问答的知识库。 3. 问题处理:当用户提出问题时,先将问题通过 embeddings API 转换成问题向量,然后与向量储存库中的所有文本块向量进行比对,查找距离最小的几个向量,提取对应的文本块,并与原有问题组合成新的 prompt 发送给 GPT API。 4. 容量限制:GPT3.5 一次交互支持的 Token 数量有限,embedding API 是解决处理大量领域知识的方案。 5. 理解 embeddings:embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。例如,“猫”和“狗”距离近,与“汽车”距离远。 例如,对于一篇万字长文,拆分成的 chunks 包含:文本块 1:本文作者:越山。xxxx。文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。文本块 3:《反脆弱》作者塔勒布xxxx。文本块 4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。如果提问是“此文作者是谁?”,通过比较 embeddings 向量,可以直观地看出文本块 1 跟这个问题的关联度最高,文本块 3 次之。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。”这样大语言模型大概率能回答上这个问题。
2025-03-16
cursor中使用的prompt哪里有?
在 Cursor 中,prompt 可以通过以下方式设置: 1. 在 `.cursorrules` 文件中加入 prompt。让 Cursor 在被用户更正行为后思考错误并记录经验教训,若有必要,可直接用自然语言提示它记录。 2. `.cursorrules` 文件放在打开文件夹的根目录上,其特殊之处在于可以改变 Cursor 对于后台 LLM 的 prompt,文件中的所有内容都会作为 prompt 的一部分发给后端的 AI,如 GPT 或 Claude。 3. 关于 Devin 的 prompt,有,其中会教您什么样的 prompt 在与 Devin 沟通时最有效。将相关原则应用到 Cursor 中,也能使其变得更聪明,能够自主验证任务完成情况并进行迭代。
2025-03-16
comfui怎么使用
以下是关于 ComfyUI 的使用方法: 1. 模型放置: t5xxl_fp16.safetensors:放在 ComfyUI/models/clip/目录下。 clip_l.safetensors:放在 ComfyUI/models/clip/目录下。 ae.safetensors:放在 ComfyUI/models/vae/目录下。 flux1dev.safetensors:放在 ComfyUI/models/unet/目录下。 理解方式:flux1dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。 2. 图像形态学处理: 支持的处理方式:erode 腐蚀(去除小噪点/分离相邻对象)、dilate 膨胀(填补小洞/连接临近对象)、open 开(先腐蚀后膨胀)、close 闭(先膨胀后腐蚀)、gradient 梯度(膨胀与腐蚀之差)、top_hat 顶帽(原图与开之差)、bottom_hat 底帽(原图与闭之差)。 使用方法: 更新 ComfyUI。 右键 image/postprocessing/ImageMorphology。 接上图像输入和输出即可。 3. Canny ControlNet: 使用方法:以 SC 文生图为基础,在 C 阶段加上常规的 CN 节点,CN 模型直接下载到/models/checkpoints 里。 模型下载地址:https://huggingface.co/stabilityai/stablecascade/tree/main/controlnet 。 工作流分享地址:https://github.com/ZHOZHOZHO/ComfyUIWorkflowsZHO 。 4. 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。
2025-03-16
trae 使用教程
以下是 Trae 的保姆级使用教程: 1. 什么是 Trae: Trae 是字节跳动推出的智能编程助手,提供基于 Agent 的 AI 自动编程能力,使用自然语言对话就能实现代码编写。 2. Trae 的功能: 传统 IDE 功能,如代码编写、项目管理、插件管理、源代码管理等。 智能问答,可在编写代码时随时与 AI 助手对话,获得代码解释、注释和错误修复等帮助。 实时代码建议,能理解当前代码并在编辑器中实时提供建议,提升编程效率。 代码片段生成,通过自然语言描述需求生成相应代码片段,甚至能编写项目级或跨文件代码。 从 0 到 1 开发项目,告诉 AI 助手想开发的程序,其将提供相关代码或自动创建所需文件。 3. 下载 Trae: 官网下载地址:https://www.trae.ai/download ,支持 Mac 系统、Windows 系统,未来支持 Linux 系统。 4. 使用方法: 安装:下载完成后按界面提示一步步安装。 登录:安装完成后点击右侧登录按钮,程序会自动打开网页提示登录,无账号需先注册。登录完可能会出现“App Unavailable”,此时需要开启科学上网。网页登录成功后可关闭科学上网,再点击中间大按钮。 进入客户端后,查看对话框右下角,有三种大模型可选:Claude3.5Sonnet、Claude3.7Sonnet、GPT4o 。 Trae 提供两种模式:Chat 模式,根据描述进行代码生成、解释、分析问题或解决问题;Builder 模式,帮助从 0 开发完整项目,对代码文件的任何更改都会自动保存。 5. 使用案例: 生成一个贪吃蛇游戏:打开 Builder 模式,输入“使用 web 技术栈生成一个贪吃蛇游戏”,排队完成后 Trae 开始思考和代码编写,期间需手动接入进行文件审查并点击“全部接受”。代码生成完成后,Trae 自动运行命令启动页面,点击运行,在 Webview 中可看到游戏效果,试玩基本无 Bug。Trae 还进行了工作总结,说明了游戏的特性、主要功能和游戏界面。 生成一个任务清单应用:在输入框中输入“使用 Web 技术开发一个任务清单应用”,可直接看效果。 根据 UI 设计图自动生成项目代码:从站酷上找一张设计图,输入提示“使用 html 技术实现如图大屏页面”,虽页面不完美但可让 Trae 调整。 从实际体验来看,Trae 表现可圈可点,具有高效代码生成能力、多技术栈支持和动态调整潜力。
2025-03-16