Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

吴恩达有《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》下载资源

Answer

以下是吴恩达《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》的相关资源:

Content generated by AI large model, please carefully verify (powered by aily)

References

初学者

|名称|作者/来源|总结|链接|发布日期|必看星标|图片||-|-|-|-|-|-|-||微软的AI初学者课程|微软|推荐阅读《Introduction and History of AI》从这里起步|[https://microsoft.github.io/AI-For-Beginners/](https://microsoft.github.io/AI-For-Beginners/)|2023/02/10|👍🏻|||AI for every one(吴恩达教程)|吴恩达|前ChatGPT时代的AI综述|[https://www.bilibili.com/video/BV1yL411u7q6](https://www.bilibili.com/video/BV1yL411u7q6)|2023/03/15|👍🏻|||大语言模型原理介绍视频(李宏毅)|李宏毅|可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂|[https://www.bilibili.com/video/BV1TD4y137mP/](https://www.bilibili.com/video/BV1TD4y137mP/)|2023/05/01||||谷歌生成式AI课程|谷歌|注:前4节课为入门课|[目录:谷歌生成式AI课程](https://ywh1bkansf.feishu.cn/wiki/DTm0way7QiKyHckMXsjc00kIn6e)|||||ChatGPT入门|OpenAI|注册、登录、简单使用方法等|[目录:ChatGPT入门](https://ywh1bkansf.feishu.cn/wiki/QddLw0teKi7nUCkDRIecskn3nuc)||||

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友

May:今天研究Kimi,开始使用[Kimi最全指南](https://waytoagi.feishu.cn/wiki/QT9Ywsl66isyHNkYWqgcFrpAnec)感受:也就是从这里开始,我抱着每天向kimi问100个问题的心态,调整自己的思考模式,工作和生活中让自己能发觉需要问的问题,然后让自己养成有问题问AI的习惯[heading2]DAY6 2024.5.31学习吴恩达生成式人工智能课程[content]May:应朋友强烈推荐,插队先看吴恩达的课程资源:吴恩达B站搜索对应关键词,有很多课程资源:吴恩达《面向所有人的生成式AI入门课程Generative AI for Everyone》学习笔记:[2024.5《生成式AI入门课程》吴恩达](https://getgaoding.feishu.cn/docx/G1rJdc6kAo25oLxi9vpcg3EknXb)用时:抽空陆续3天学完[heading2]DAY7 2024.6.1探索用AI解决一个真实问题[content]May:有一个明确的议题,看怎么解任务:我的团队最近要写一份行业研究报告,我试试看AI怎样能帮到我[议题:用AI写行业研究报告](https://getgaoding.feishu.cn/docx/O9KvdxzKTorOfQxicmYcsEVJnSh)

2023 年历史更新(归档)

强烈推荐[AI课程目录](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblenNiaJkoTiQDQ&view=vewZ12GaXz)下的:《[吴恩达:生成式AI入门视频课程](https://waytoagi.feishu.cn/record/YXnLrDtgvedy4jcKEoLctMcVnDb)》,这是本月吴恩达推出的新课程,一共31集,宝玉老师每天翻译一集,可在B站上观看学习;Google Deepmind的新论文:[《Levels of AGI:Operationalizing Progress on the Path to AGI》](https://waytoagi.feishu.cn/record/SE1RrFZsgeMagRc8ch9cGx0unqc)将AGI从“性能”和“通用性”两个维度分成了六个层级,GPT-4是Level 1,刚刚到“涌现”的阶段;[用prompt识别个人信息,包含年龄、位置、性别甚至收入等](https://waytoagi.feishu.cn/wiki/YX56wgXPtiI2xFkXXFZcvrSEnqd);

Others are asking
当前国内有哪些AIGC应用
当前国内的 AIGC 应用主要有以下一些: 语言文本生成类: “悟道・天鹰”(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。
2025-03-12
生成AI视频的工作流
将小说用 AI 制作成视频的工作流通常包括以下步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-12
如何准确用Ai算八字
以下是关于用 AI 算八字的相关内容: 将千年传承的命理智慧与现代 AI 技术融合,通过代码排盘和 AI 解析八字中的玄机。详细分析报告包括八字基本信息及构成、命理详细分析(个性、事业、财运、婚姻、健康)、运势预测(短期、中期、长期)、人生总论及建议。 提示词方面,实现了精准八字四柱计算和模拟排盘,支持公历日期自动转换以及完整天干地支推算。输入公历年月日时,经过历法转换模块(公历→农历)、天干地支计算(年干支以立春为界、月干支以节气为界、日干支采用经典排盘法、时干支由日干推算),最终输出完整八字命盘。 有人尝试用 GPT4o 算面相,不仅能判断职业,还能对照片拍摄背景进行分析。但也有人认为这可能存在巧合或利用了人物库。 需要注意的是,用 AI 算八字等命理相关内容缺乏科学依据,建议您理性看待。
2025-03-12
我想通过学习ai的技能赚钱,是长久主义者
以下是为您提供的关于通过学习 AI 技能赚钱的相关信息: 首先,阳萌认为在 AI 学习中,最后还是走仿生的方法,即有一个足够长的 Context。这引发了关于记忆保存位置的探讨,比如手机适合收集信号产生本地 Context,阳萌赞成将训练好的模型部署在端侧,记录知识和记忆的 Context 不能跑到云端。同时,要抛开表面事实,回归基础原理,找到突破关键,追求长期全局最优解,相信长期主义,持续学习,自我觉察和自我进化,因为世界是参差的,唯有持续学习能抵御未来的变化。相关视频链接: 另外,关于如何靠 GPTs/GLMs 赚钱,OpenAI 推出 GPTs 时,有人将其比作苹果时代的 AppStore。产品的核心竞争力和护城河不在于 Prompt,而在于数据和服务(定制化 Tools)。传统 SaaS 的能力会被碎片化并整合到各种 GPTs 里,OpenAI 成为流量入口。例如,WebPilot 通过开发搜索接口提供服务接入 GPTs,小红书写作专家通过收集数据和规则包装成 GPTs。靠红利赚钱不是长久之计。
2025-03-12
请给我本科生写毕业论文向AI发送的指令
以下是一些本科生写毕业论文时向 AI 发送的指令示例: 1. “根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 2. 请基于以下案例情况,给我推荐 5 个类似案例:某公司员工在公司内部网络中发布了一篇批评公司管理的文章,引起了公司高层的不满。公司以员工违反了公司的规章制度为由,将其解雇。员工认为公司的行为侵犯了他的权利,将公司告上法庭。 3. 【提炼的案例事实(也可以让 AI 先提炼总结)or 直接把案例直接发给 AI,让 AI 基于以上事实推荐类似案例】 4. 根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】
2025-03-12
ai行业
AI 行业在过去 12 个月里流量增长显著。起始于 2022 年 9 月,分析的工具产生了 2.418 亿次访问,到 2023 年 8 月达到 28 亿次访问量,总流量增长了 10.7 倍,平均每月增加 2.363 亿次。流量的飞跃从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台开始,2023 年 5 月达到峰值约 41 亿,之后虽有回落,但人们的兴趣仍巨大。 展望 2025 年,AI 行业有以下创新机会和发展要点: 1. 大型基座模型能力的优化与提升:通过创新技术强化复杂推理和自我迭代能力,推动在高价值领域应用,优化模型效率和成本,加速普及和商业化。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展。 3. AI 的多模态融合:整合多模态数据,提升内容生成多样性与质量,创造全新应用场景。 AI 已经在各行各业有广泛应用场景,包括: 1. 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 2. 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 3. 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 4. 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 5. 交通运输:(此处未提及具体应用场景)
2025-03-12
能帮我做一个介绍生成式AI的ppt吗?5页左右即可,介绍一些通用的,用户规模较大的即可,不超过5种。
以下是为您生成的关于生成式 AI 的 5 页 PPT 内容: 幻灯片 1:封面 标题:生成式 AI 简介 幻灯片 2:生成式 AI 的基础模型 大型预训练模型可适应或微调用于多种下游任务,如情感分析、图像字幕和对象识别。 有可能革新医疗、金融和客户服务等行业,检测欺诈并提供个性化支持。 幻灯片 3:在软件开发中的应用 提及 Bard 和生成式人工智能工作室等工具,可用于调试、代码转换和应用构建。 幻灯片 4:PALM API 的会话式人工智能引擎 用户可用自然语言交互。 可创建数字助手、自定义搜索引擎、知识库和培训应用。 能与 Maker Suite 集成,通过图形用户界面访问 API,套件包含模型训练、部署和监控工具。 幻灯片 5:参考资料 All Readings:Introduction to Generative AI Here are the assembled readings on generative AI: 此外,以下是一些常用的 PPT 生成工具(网站): https://zhiwen.xfyun.cn/ 讯飞智文 http://Mindshow.fun Markdown 导入 http://kimi.ai 选 PPT 助手暂时免费效果好 http://Tome.app AI 配图效果好 http://Chatppt.com 自动化程度高 https://wenku.baidu.com 付费效果好 希望以上内容对您有所帮助!
2025-03-11
生成式AI有哪些类型和工具
生成式 AI 主要有以下类型和相关工具: 类型:生成的内容可以是多模式的,包括文本、图像、音频和视频。能够帮助完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等。 工具: Google Cloud 提供了多种易于使用的工具,如 Vertex AI,它是端到端机器学习开发平台,可帮助构建、部署和管理机器学习模型。 图中描绘的趋势显示,相关工具和基础设施逐渐模块化和专业化,公司被分组到以下四个主要类别: Orchestration(编排):涉及 DUST、FIAVIE、LangChain 等公司提供的工具,帮助管理和协调各个部分和任务。 Deployment,Scalability,&PreTraining(部署,可扩展性和预训练):如 UWA mosaicm、NMAREL、anyscale 等公司提供工具,用于部署模型、保证可扩展性和进行预训练。 Context&Embeddings(上下文和嵌入):如 TRUDO,Llamalndex,BerriAI 等公司提供工具,处理和理解语言上下文以及进行嵌入。 QA&Observability(质量保证和可观察性):如 Pinecone,drant,Vald 等公司提供工具,确保模型表现和监控性能状态。 目前典型的生成式 AI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。国内主要在《网络安全法》《数据安全法》《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》共同监管 AIGC 行业。
2025-03-10
生成式 AI 搜索
生成式 AI 搜索具有以下特点和应用: 有可能彻底改变互联网的核心功能之一——搜索。传统搜索中,用户在 Google 输入问题后常被大量链接及不准确信息淹没,而由大型语言模型驱动的搜索引擎可提供自然语言写成的简洁答案,并能在用户感兴趣时提供更多链接阅读。 一些公司为一般搜索查询提供服务,如 You 和 Neeva。还有公司采取更垂直化的方法,如 Consensus 跨越研究论文进行搜索,Perplexity 的 Bird SQL 产品针对 Twitter 进行搜索。 对于产品推荐尤为有价值,能根据特定需求提供策划过的选项列表。 在企业内部搜索应用中具有巨大潜力,如 Glean 允许团队跨应用搜索,Vowel 允许用户查询视频会议记录。 以下是一些推荐的 AI 搜索引擎: 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 Perplexity:聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术从各种来源收集信息并给出答案。 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,提供插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。 在生成式人工智能方面,近年来大型语言模型的飞速进步为信息检索领域带来新机遇和挑战。2022 年 OpenAI 发布 ChatGPT 引发轰动,其在对话中展现出理解复杂问题和生成连贯文本的能力,被视为对传统搜索引擎的颠覆性竞争。ChatGPT 的成功引发搜索引擎巨头的紧迫感,谷歌推出 Bard 并逐步向 180 多个国家开放服务,百度推出文心一言等生成式 AI 搜索功能,微软将 GPT4 集成到必应搜索中推出新版本的 Bing Chat。早期观察指出,聊天机器人式的搜索在提供直接答案的同时,存在回答不准确甚至“幻觉”信息的问题,现阶段许多用户对 AI 答案的准确性和可靠性仍存疑虑。
2025-02-28
生成式AI相关知识
生成式 AI 相关知识如下: GenAI 是生成式 AI 的一种,全称 Generative AI,是基于深度学习技术和机器学习算法,从已有数据中学习并生成新数据或内容的 AI 应用。其通过大规模数据集训练深度神经网络模型,能为游戏、娱乐和产品设计等提供解决方案,典型的 GenAI 包括 OpenAI 推出的 ChatGPT、GPT4、DALLE 以及百度的文心一言、阿里云的通义千问等。但在数据处理中存在未经授权收集信息、提供虚假信息、侵害个人隐私等潜在合规风险。 AIGC 指利用 GenAI 创建的内容,包括图像、视频、音频、文本和三维模型等。其工具使用机器学习算法,通常基于自然语言处理,分析大型文本数据集并学习生成新内容。国内主要在《网络安全法》《数据安全法》《个人信息保护法》框架下,由《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》共同监管。 AIGC 主要分为语言文本生成、图像生成和音视频生成,分别利用不同的模型和技术,应用于多个领域,但也可能引发内生风险、数据隐私问题和知识产权风险,相关法律和规定对其有一定要求,但部分问题仍需更多法律明确,且需加强监管和伦理约束。 此外,台湾大学李宏毅教授的生成式 AI 课程介绍了其基本概念、发展历程、技术架构和应用场景等内容,共 12 讲,每讲约 2 小时。通过学习该课程,可掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解其发展现状和未来趋势。课程包括生成式 AI 的定义和分类、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等内容,并提供了教材、参考书籍、在线课程、开源项目等学习资源和学习方法。
2025-02-24
大模型和小模型区别是什么?是否大模型都属于生成式AI,小模型属于判别式AI,为什么大模型有幻觉小模型没有?
大模型和小模型的区别主要体现在以下几个方面: 1. 规模和参数数量:大模型通常具有更多的参数和更复杂的架构,能够处理更大量和更复杂的数据。 2. 能力和性能:大模型在语言理解、生成等任务上往往表现更出色,能够生成更准确、丰富和连贯的内容。 3. 应用场景:大模型适用于广泛的通用任务,而小模型可能更专注于特定的、较狭窄的领域。 并非大模型都属于生成式 AI,小模型都属于判别式 AI。生成式 AI 能够生成新的内容,如文本、图片等;判别式 AI 则主要用于对输入进行分类或判断。模型的分类与其大小并无直接的必然联系。 大模型出现幻觉的原因主要是其通过训练数据猜测下一个输出结果,可能会因错误或不准确的数据导致给出错误的答案。而小模型相对来说数据量和复杂度较低,出现幻觉的情况相对较少,但这并非绝对,还取决于模型的训练质量、数据的准确性等多种因素。优质的数据集对于大模型减少幻觉现象非常重要。
2025-02-21
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19