Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI+行业的基本介绍

Answer

以下是关于 AI+行业的基本介绍:

AI 市场与 AI 产品经理

  • AI 就业市场鱼龙混杂,求职者要做好信息甄别,除看招聘评价,还应提前收集其他信息。
  • 部分企业搞不懂 AI 能带来的价值,求职者需有咨询和商业化思维帮公司厘清业务增长机会。
  • 不同公司对 AI 产品经理的定位和要求不同,有行业沉淀和认知的转型更有机会,目前应用层机会在“AI+行业”,只懂其一不够,还需业务创新。

AI 与内容创作

  • 用 AI 写小脚本方便但有局限,需先成为领域专家才能更好辅助工作。
  • 基于思考和推理,重仓 AI+内容创作赛道,因其有完美的产品-模型匹配和产品-市场匹配,且天花板高。
  • 业务包含营销以及小说和短剧创作,营销板块开发了智能营销矩阵平台,服务于各细分行业头部企业。

AI 对文化产业的影响

  • 推理经济性方面,AI 视频生成成本将逐步低于现有成本。
  • 目前生成内容存在不可控性,长短视频场景应用有别,短视频短剧/TVC 生产流程可全替代,长视频领域 AI 尚在工具层面部分替代。
  • 市场前景广阔,5 年内国内有望达千亿级市场,AI 让只为一人打造广告成为可能。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会

基于我之前也实操了一些AI落地项目(后面分享),我实际聊了一些AI企业的就业机会,谈谈个人的想法。1)鱼龙混杂,求职者要做好信息甄别。即使面试通过拿到offer,除了看boss直聘的招聘评价,一定要提前收集其他信息,如在脉脉上搜一下这家公司靠不靠谱;2)一些公司实际上没搞懂用AI能为自己企业带来什么价值,只是处于焦虑或跟风心态要做AI,这部分企业可以聊,但要求求职者要有咨询和商业化的思维,能帮公司厘清业务增长机会;3)不同公司对AI产品经理的定位不同,所以招聘市场上对AI产品经理的岗位职责和任职要求也不同,慢慢会统一标准,这也是产品经理转型的机会。4)有行业沉淀和认知的产品经理转型会更有机会,类似之前的“互联网+”,目前应用层的机会在“AI+行业”,只懂AI或只懂行业是不够的。还有就是业务创新,找到细分的场景痛点并完成PMF验证,海外有很多优秀案例。

陈财猫:如何用 AI 写出比人更好的文字?

用AI写小脚本当然非常方便,而且可以在较短时间内完成极大的工作量,一个人就可以顶一个小型开发团队。但是AI写代码60秒,你要debug 60分钟,技术栈稍微偏一点,AI就开始装疯卖傻,在代码里偷偷埋坑,让人相当痛苦,这也意味着你必须先在某个领域成为一个专家,才能使用AI辅助你的工作。它也没有办法完成大型任务,也不知道你开发出来的企业工具怎么用。这都限制了它的应用场景。基于以上的思考和逻辑推理,我决定在现阶段重仓AI+内容创作赛道。这是一个有完美的PMF(Product Model Fit),产品-模型匹配的赛道,AI能做且擅长,容错极大,小错小创新,大错大创新。这个赛道又有真正的需求,有钱赚,内容市场在AI出现之前就已经又成熟又大了,这是另一个PMF(Product Market Fit),产品-市场匹配。最后则是天花板高,实际上现在用AI产出内容很容易,但是产出好的,人喜欢的内容是不容易的。内容泛滥,读者阈值不断提高,这对于技术比较好的公司是一种利好。所以,我决定坚定重仓内容创作赛道。叉着腰说自己厉害是不能说服人的,所以接下来,请允许我介绍一下我都做了哪些事情,也就是说“我都在用AI写什么样的内容”。我的业务主要包含两大板块:营销以及小说和短剧创作。在营销板块,我们开发了智能营销矩阵平台。目前这个平台采取低调运营策略,主要服务于各细分行业的头部企业,特别是那些已具备一定规模、业务相对成熟的公司。AI的一大优势“最高水平等同于平均水平”。只要产品本身做得够好,投入充分时间,你可以把文字输出的水平稳定保持在优秀的人类专家水平。相比之下,传统行业不仅需要招募优秀人才,还要面对人员状态不稳定、团队可能出现波动等问题。

2024年度AI十大趋势报告:AI如何影响文化产业

•推理经济性:AI视频生成成本与非AI工作流成本齐平并逐步发展到显著低于现有成本,持续降低推理成本数量级△图:技术发展双维度决定应用渗透率阶段目前渗透率演化阶段根据场景有所区分,主要卡点可以概括为:生成内容的不可控性。具体包括形象不⼀致、动作不流畅、表情不生动、复杂提示词难以完全实现,以及随着时长增加逐渐出现明显不符合物理规律的动作发展的问题。3、长短视频场景均有应用,渗透率分档明显短视频——短剧/TVC生产流程可实现AI工具全替代:在短视频领域,短剧和TVC由于其自身特殊性,成为最早落地AIGC工具并率先形成完整全AI工作流解决方案的内容生产场景。长视频——电影/电视剧/动画开始渗透,AI辅助人类进行内容生产:在长视频领域,AI技术尚停留在工具层面,对工作流实现部分替代、降低成本的效果,暂时无法提供全流程全AI替代传统工作方式的解决方案。总体而言,越接近于综合性思考、策划层面,对于AI来讲就越难,而越具体的工作越容易被取代。——陈宇,《满江红》编剧4、市场前景广阔,5年内有望达千亿级市场我们在《AI视频生成研究报告》中,对影视行业市场规模做了粗略估算。△图:2023年海内外影视市场规模估计,《AI视频生成研究报告》如图所示,国内影视市场规模在2023年约可达3835亿元,若假设2027年AI影视市场可以获得上述国内总市场份额的10%,则国内AI影视总市场规模预计将达约380亿元以上;若假设2030年可以获得25%以上市场份额,则国内AI影视总市场规模将达千亿级别。三、AI+营销:AI让只为⼀人打造广告成为可能

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
介绍下即梦3.0的模型,为什么很多人说它好用
即梦 3.0 模型具有以下显著特点,这也是很多人认为它好用的原因: 1. 超真实: 质感提升:图片不再有磨皮过度的“假脸感”、“油腻感”,皮肤纹理、物品材质更自然。 情绪到位:人物表情不再僵硬或眼神空洞,能表现出更细腻、更有感染力的情绪,如开心、严肃、沮丧落泪等。 2. 超高清:默认能生成 1K 分辨率图片,还支持到 2K,画面更清晰,结构更准确。 3. 超专业: 影像大师:能更精准地理解电影类型(如恐怖片、爱情片、公路片)和镜头语言(如大特写、鱼眼镜头、俯视视角)。 动漫高手:动漫风格更多元(日漫、国漫、皮克斯风等),细节更丰富,色彩更统一,告别“抠图感”。 文字设计:不仅能准确生成大字、小字,还支持超多字体(细体、粗体、可爱体、毛笔字、涂鸦体等),排版更专业、更有设计感。 4. 超智能:能更好地理解自然语言描述,简单的指令也能出好图,支持“一句话 P 图”的自然语言编辑能力。 此外,即梦 3.0 在文字处理方面表现出色,不仅提升了大字的准确性、设计感和丰富度,还大幅解决了小字的稳定性问题。相比之下,在中文场景中,其他模型可能存在一些局限性,如 GPT4o 可能存在不识别某些中文字、难以生成特别设计感的字体等问题。而即梦 3.0 作为中文 AI 绘图模型,在中文的表现性上对国内用户更有用且友好。
2025-04-14
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
从最基本的原理开始讲
以下是为您从最基本的原理开始讲解的相关内容: 强化学习: 从最开始的 K 臂抽奖机器入手讲解了强化学习的基本原理,然后切入到 Qlearning 中学习如何使用 Q 表来进行强化学习,最后再借助神经网络将 Q 表替换成用函数来拟合计算 Q 值。 参考文章: https://lilianweng.github.io/posts/20180123multiarmedbandit/ https://yaoyaowd.medium.com/%E4%BB%8Ethompsonsampling%E5%88%B0%E5%A2%9E%E5%BC%BA%E5%AD%A6%E4%B9%A0%E5%86%8D%E8%B0%88%E5%A4%9A%E8%87%82%E8%80%81%E8%99%8E%E6%9C%BA%E9%97%AE%E9%A2%9823a48953bd30 https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%95 https://rl.qiwihui.com/zh_CN/latest/partI/index.html https://github.com/ty4z2008/Qix/blob/master/dl.md https://hrl.boyuai.com/ http://zh.d2l.ai/ 苏格拉底辩证法及其第一性原理: 这里所说的“辩证法”,是一种通过提问和回答,深入挖掘、质疑和明确观念的艺术,是始于苏格拉底的、源头上的“辩证法”。这门艺术可通过一系列问题,不断挑战人们对世界的既定认知,揭示其中的矛盾和不足,从而引领人们学会自我反思并走向真理。把 AI 作为方法,就是要用辩证法以对话方式引导出 AI 被预训练的世界级的知识和推理能力,然后使其变成我们可以重复调用的“专家级团队”。既然先进的大语言模型是预训练的、以自然语言对话为交互的,又因为人们创造“概念”是为了对事物达成共识,并能更好地交流,所以我们就选择从对话开始,追本溯源,探索如何对话、如何训练对话能力及如何操纵概念——直达认知事物的第一性原理,然后再回到应用上来。 Stable Diffusion: 从艺术和美学的角度来看,扩散模型可以被理解为一种创作和表达过程,其中的元素通过互动和影响,形成一种动态的、有机的整体结构。 前向扩散过程是一个不断加噪声的过程。例如,在猫的图片中多次增加高斯噪声直至图片变成随机噪音矩阵。对于初始数据,设置 K 步的扩散步数,每一步增加一定的噪声,如果设置的 K 足够大,就能够将初始数据转化成随机噪音矩阵。扩散过程是固定的,由 Schedule 算法进行统筹控制。同时扩散过程也有一个重要的性质:可以基于初始数据 X0 和任意的扩散步数 Ki,采样得到对应的数据 Xi 。 反向扩散过程和前向扩散过程正好相反,是一个不断去噪的过程。将随机高斯噪声矩阵通过扩散模型的 Inference 过程,预测噪声并逐步去噪,最后生成一个小别墅的有效图片。其中每一步预测并去除的噪声分布,都需要扩散模型在训练中学习。
2025-04-14
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09
介绍一下秘塔AI的基本情况和使用技巧
秘塔 AI 是一款优秀的工具,具有以下基本情况和使用技巧: 基本情况: 整体流程较长且完整,首先需要构建专题,并上传文档或者复制网页链接。 搜索完成后的操作类型丰富,例如可以继续追问、导出文档、收藏、保存到秘塔写作猫并编辑、生成在线演示文稿、下载脑图图片等,还能查看与原文的对应关系并进一步搜索。 RAG 和搜索能力出色,是国产之光。 使用技巧: 构建专题时,认真准备上传的文档或网页链接。 搜索时,在搜索框左下角选中专题以定制数据源。 充分利用丰富的搜索完成后的操作,满足不同需求,如追问、编辑、分享等。 您可以通过以下链接访问秘塔 AI 搜索:https://metaso.cn
2025-03-26
介绍AI基本概念和目前发展阶段
AI 的基本概念: 人工智能(AI)是指让计算机模拟人类智能的技术。 主要分支包括机器学习、深度学习、自然语言处理等,它们之间存在密切联系。 目前发展阶段: 已取得显著进展,如聊天机器人具备基本对话能力,能用于客户服务和简单查询响应。 推理者如 ChatGPT 能解决复杂问题并提供详细分析和意见。 智能体虽能执行部分自动化业务,但仍需人类参与。 创新者如谷歌 DeepMind 的 AlphaFold 模型能协助人类完成新发明。 最高级别的组织型 AI 能自动执行组织的全部业务流程,但尚未完全实现。 对于新手学习 AI: 建议阅读「」熟悉术语和基础概念。 浏览入门文章了解历史、应用和发展趋势。 在「」中找到初学者课程,特别推荐李宏毅老师的课程。 通过在线教育平台按自己节奏学习并获取证书。 根据兴趣选择特定模块深入学习,掌握提示词技巧。 理论学习后进行实践,尝试使用各种产品并分享实践成果。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人。 如果希望继续精进 AI: 了解 AI 背景知识,包括基础理论、历史发展。 掌握数学基础,如统计学、线性代数、概率论。 熟悉算法和模型,如监督学习、无监督学习、强化学习。 学会评估和调优模型性能。 了解神经网络基础,包括网络结构和激活函数。
2025-03-20
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
想要学习AIGC,推荐下相关的行业大V
以下是一些 AIGC 相关的行业大 V 推荐: :归臧整理的 AIGC 周刊,关注 AI 的朋友每周必读。 :连续创业者,Prompt 版块共建者。 。 :“互联网的那点事”,微博互联网观察家。 ZHO:建筑师|ComfyUI 设计师。 :AIGC 社区野神殿创始人。 。 赛博禅心:最新最快的 AI 资讯,作者大聪明。 张蔚:华兴资本经理,架构和投资版块共建者。 :热爱分享,永远好奇,AI 高质量社群组织者。 汗青:产品经理|AI 设计师。 此外,还有北京分队中的一些相关人士: Lucky:在信息技术领域公司任职 7 年+,目前担任江西 5 家公司企业级 information security 管理,3 个地区千万级企业级 confidentiality Project 管理,5 个地区上海、合肥、苏州、南京、深圳 information security 体系建设管理顾问,目前一只 20 人+AI 项目团队,终身学习践行者。能提供 AI 相关技术的所有项目,包括 AI 图片视频、2D 动画视频、AI prompt、AI 提示词企业培训、AI 大模型、AI agent、数字人等产品。坐标南昌。 粉仔:目前抖音上的 AIGC 相关博主,粉丝画像特别受到中老年妇女们的喜爱,俨然成了她们的偶像。熟悉目前主流的 AIGC 工具。坐标北京。 sam:做技术行业,热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。逍遥游的制片人和编剧。 Sunkim:自由体验设计师,前保利威设计负责人,先后在新浪、百度、脉脉做体验设计工作。对 AIGC 感兴趣,目前在做 AI 口语教育类产品(上线了),和 web3 相关设计,以及跟大伙学习 AI 视频制作。 胡凯翔:国企工作 10 余年,后沉迷 AI 提示词研究编写,小七姐第一期课程毕业生,微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册,使用 AI 辅助阅读和开智,标书、论文的写作,玄学取名和头像设计,目前沉迷个人知识体系的搭建和离谱村系列视频的共创。 陈皓/Robin:目前在家科技公司从事产品工作,主要和 Ai,3D 视觉内容+数字人相关;有过知识付费和海外教育的创业经历。
2025-04-14
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13
零基础如何学习AI从而进入AI行业
对于零基础想要学习 AI 从而进入 AI 行业的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI 可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-04-12
有AI在各个行业的案例吗
以下是 AI 在各个行业的一些应用案例: 汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他行业: 1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析和销售策略咨询等。 2. 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 4. 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 5. 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2025-04-12
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10