Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai实践的内容

Answer

以下是关于 AI 实践的相关内容:

社区 AI 讲师招募

  • 招募要求:
    • 具有丰富的企业端 AI 实践经验,涵盖以下场景之一或多个:
      • AI 生成爆款内容,如借助 AI 分析挖掘同品类爆款,利用 AI 工具生成电商商品图、小红书图文内容、种草短视频等。
      • 公域阵地场景,基于视频号、抖音、小红书、公众号等平台搭建企业营销推广能力,包括矩阵号和 IP 号,通过短视频、直播等方式获取 leads,涉及矩阵号工具、内容抓取分析、脚本创作、AI 剪辑、自动回复评论、无人直播工具等。
      • 私域阵地场景,如朋友圈、小红书、社群、个人 IP 的获客转化,使用销售企微 SCRM 工具、企业智能体进行 AI 内容抓取和自动回复。
      • 服务自动化工具,包括数据监控和预警、流程优化、自动运营等。
      • 快速搭建数据分析看板。
      • 跨境电商场景,如 tiktok 视频制作及投放、电商图片设计、精准营销、语言翻译、AI 独立站建设、社媒私域、批量混剪、海外达人直播、无人直播(数字人直播)等。
    • 具备良好的表达能力,能清晰阐述技术和业务方面的沉淀。
  • 招募流程:感兴趣的小伙伴提交个人简历(包括基本信息介绍、学历、专业、工作经验,以及 AI 企业端的案例),填写问卷,预约电话面谈,面谈通过后进行公开课试讲。

陈财猫:如何用 AI 写出比人更好的文字?

  • AI+内容创作是现阶段的优质赛道,具有完美的产品-模型匹配和产品-市场匹配,且发展上限高。
  • AI 写作的实践成果包括营销、小说和短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,推出小财鼠程序版 agent。
  • 好文字能引发人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣从而写出好文字。
  • 用 AI 写出好文字的方法:选择合适的模型,评估模型的文风、语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。
  • 对 AI 创作的看法:AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活或自身是受害者,作者期望 AI 能力进一步提升以改变每个人的生活。

熊猫 Jay:用 AI+思维模型探索问题的全新解答

  • 案例实践:利用 AI+六顶思考帽做个人 IP 定位。
    • 推荐使用 GPT-4,效果更稳定,内容质量更高。包括初始化提示词、回答每顶帽子对应的问题,最终得到答案和建议。
    • 文心 4.0 同样包括初始化提示词、回答每顶帽子对应的问题,并得到答案和建议。
    • 小结:该案例借助六顶思考帽提供不同思考维度,引导全面思考问题。当把思考后的信息输入给 AI 后,能总结出满意的答案和建议。开头提到人的惰性问题,借助 AI 可以更全面剖析个人决策或团队会议中的问题,找到更正确的决策方式。之后,大家可用六顶思考帽+AI 解决困扰自己的问题,无论是个人决策还是团队讨论。
Content generated by AI large model, please carefully verify (powered by aily)

References

社区AI讲师招募

1.有丰富的企业端AI实践经验,主要针对以下几个场景(有其中一个场景或多个场景实践能力沉淀均可):1.1.AI生成爆款内容:借助AI分析能力,挖掘同品类爆款内容,借助AI工具能力,生成电商商品图、小红书图文内容、种草短视频内容等;1.2.公域阵地场景:依托于视频号、抖音、小红书、公众号等平台,搭建企业的营销推广能力,包括搭建矩阵号和IP号,通过短视频,直播等方式获取leads,这个背后是矩阵号工具、内容抓取分析、脚本创作、AI剪辑、自动回复评论、无人直播工具等;1.3.私域阵地场景:朋友圈、小红书、社群、个人IP。获客转化,销售企微SCRM工具、企业智能体进行AI内容抓取和自动回复;1.4.服务自动化工具,数据监控和预警,流程优化,自动运营等;1.5.快速搭建数据分析看板;1.6.跨境电商场景:tiktok视频制作及投放、电商图片设计、精准营销、语言翻译、AI独立站建设、社媒私域、批量混剪、海外达人直播、无人直播(数字人直播)等2.有不错的表达能力,能将自己在技术和业务方面的沉淀清晰的调理表达出来[heading1]招募流程[content]对感兴趣的小伙伴,提交份个人简历(包括基本信息介绍、学历、专业、工作经验,以及AI企业端的案例)可以填写下面的问卷预约时间进行电话面谈,面谈通过后,开始进行公开课试讲。

陈财猫:如何用 AI 写出比人更好的文字?

AI+内容创作是现阶段最好的赛道:基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,认为该赛道有完美的产品-模型匹配和产品-市场匹配,且天花板高。AI写作的实践成果:业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版agent。定义好文字:好文字能引起人的生理共鸣与情绪,AI因预训练数据量大能学会引发共鸣,从而写出好文字。用AI写出好文字的方法:选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过prompt中的描述与词语映射到预训练数据中的特定类型文本,往prompt里塞例子。对AI创作的看法:AI创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌AI是因其未改变多数人生活,或自身是受害者。作者期望AI能力进一步提升,改变每个人的生活。

熊猫Jay :用 AI + 思维模型 探索问题的全新解答

推荐使用GPT-4,效果更加稳定,内容质量更高。1、初始化提示词2、回答每顶帽子对应的问题这里的重点是借助AI帮助我们思考。让我们不遗漏每个维度,站在更全面的位置来思考问题。3、最终得到答案和建议[heading4]2)文心4.0[content]1、初始化提示词2、回答每顶帽子对应的问题3、得到答案和建议[heading3]4、小结[content]该案例中,借助六顶思考帽给我提供了不同的思考维度,并引导我思考关键的问题点,当我把思考后的信息输入给AI后,最终也总结出了比较满意的答案和建议。开头讲过人有惰性的问题,借助AI后我们将可以针对很多问题,无论是个人决策,还是团队会议,都可以更加全面的剖析问题,找到更加正确的决策方式。之后,大家可以找到最近困扰你的问题,无论是个人的决策,还是团队的讨论,利用六顶思考帽+AI来给你提供决策思路。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
如果是小白新手,理论应用到实践中最重要的是什么
对于小白新手,将理论应用到实践中,以下几点最为重要: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,可找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品做出作品,知识库中有很多实践后的作品和文章分享,欢迎分享自己的实践成果。 5. 体验 AI 产品:与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,就像有人认为“只要知道它的原理和历史,自然而然就会知道它的底线和顶点在哪里”,但实践中的体验和尝试同样不可或缺。
2025-04-13
学的理论模型如何高效指导实践,在教学中
在教学中,关于如何让学习的理论模型高效指导实践,以下是相关内容: 本系列课程是由 Deeplearning 联合谷歌 Gemini 团队开发的免费在线课程,以 Gemini 模型作为教学模型,教授如何使用多模态提示词与模型交互。但课程内容在国内存在部分无法应用的情况,且缺乏某些概念。因此,对部分教程内容进行了重新整理和刊发,并适当混合了一些入门概念,以增强普世价值。(如有需要,请访问) 在本节课程中您可以学到: 通过实践,与视频内容交互,辅助工作与学习。 通过实践,学习 Function Calling 概念与实际应用。 扩展阅读: )
2025-04-13
ai在茶饮或者餐饮行业的实践
以下是 AI 在茶饮或餐饮行业的一些实践: 中昊智达是一家智能饮茶机研发与运营服务商,专注于智能饮茶机的研发、生产和市场投放。该公司整合了茶叶种植、生产、销售和体验等多方资源,构建了完整的产业链,致力于为消费者提供便捷的茶饮服务。 有人对利用 ComfyUI 的底层原理搭建适用于中医药房自动抓药或养生茶饮茶方的工作流感兴趣。 大雍是新茶饮行业的全栈服务商,在 AI 社群的共创项目里主要负责剧本创意和分镜脚本部分。
2025-04-09
AI在人力资源中的实践应用资料
以下是关于 AI 在人力资源中的实践应用资料: 在人力资源管理领域,AI 的应用覆盖了多个环节,显著提高了工作效率。 在招聘初期,AI 可用于职位描述生成、简历分析、面试题设计等方面。 在员工绩效评估中,AI 能够分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈。 在员工培训与发展方面,AI 也能发挥作用。 相关报告推荐: 《》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 此外,在全行业中,基础办公提效如 ppt、excel、会议报告、策划会、文案包装、图文海报、客服机器人 bot 等,都可以从【单个任务 task>角色 role>角色间协同 collaboration】显著提高工作效率。
2025-03-31
公司给我了一个调研作业,收集 市场上其它公司在agent业务变革上的优秀实践
很抱歉,目前没有关于市场上其他公司在 agent 业务变革方面优秀实践的相关内容。建议您通过以下途径进行收集和调研: 1. 行业报告和研究机构发布的分析:这些通常会涵盖多个公司在特定领域的实践和趋势。 2. 专业的行业论坛和社区:与同行交流,获取他们的经验和见解。 3. 公司的官方网站和公开资料:了解其业务变革的介绍和相关案例分享。 4. 新闻媒体报道:关注相关的商业新闻,获取最新的动态和实践案例。
2025-03-31
实践案例推荐,仅搜索教育、多邻国相关的内容
以下是与教育、多邻国相关的实践案例推荐: 张翼然:用 AI 为教师减负(3H) 教师的 AI 减负指南生成式人工智能在教学中的应用 教师使用 AI 小技巧 想让 AI 做好,首先你得会做 教学目标:是否明确,与课程标准和学生实际需求相符合 教学方法:是否使用多种,考虑学生不同学习风格 能力培养:是否注重培养学生的思维、创新和实践能力 教学实践 教案中的教学过程是否紧密结合学生现实生活和个人经验 群里“公开问”创造良好探究学习气氛,提问技巧可见的快速提高 是否充分利用课堂时间,让学生参与教学 是否在教学中关注学生反馈和理解,及时调整教学策略 师生关系 是否营造良好教学氛围和师生关系 是否平等尊重学生主体地位,体现尊重和关爱学生的教育理念 是否注重发挥学生积极性和主动性,激发学习热情 移动教学应用: 多邻国 六六写字 幕布 “遇见苏轼”项目式教学 在教育实践中,针对二年级学生对于抽象数学概念感到困惑的痛点问题,也有相关的探索和尝试。
2025-03-20
我是一个实体店家,我怎么能利用AI产生内容进而帮助我在流量平台拓客
以下是一些利用 AI 为实体店在流量平台拓客的方法和思路: 1. 借助抖音平台:利用抖音对实体商家的流量扶持,购买 AI 抖音发广告的软件。这需要懂软件开发的技术人员,并且熟悉抖音。 2. 利用 AI 私域做客户培育/用户旅程:通过 AI 软件自动跟进和培育客户,需求是懂软件开发的技术人员且熟悉微信。 3. 打造特定领域的 AI 工具:比如针对法律、健康、财务、教育、销售、HR 等领域,开发如“AI 合同助手”“AI 健康管家”“AI 课程生成器”“AI 销售助理”等垂类工具。 4. 作为引流者:把 AI 工具做成“公众号插件”“小程序入口”或“微信机器人”进行推广,获取分成。 5. 参考优秀作品:如商业综合体 AI 伴侣、客流诊断师、跨境商品不求人、公私域全流程内容规划师、公众号 10W+爆文工厂、营销内容文案合规检查、提示词定制神器、Nicole 咖啡门店分析师、3C 软文文案撰写、网购评论助手、万能 AI 营销助手、贴心平替推荐精灵、产品一键生成一篇高质量的知乎种草文、One thing AI 目标达成教练、润物等,从中获取灵感和思路。
2025-04-15
如何识别网页内容
识别网页内容通常可以通过以下步骤实现: 1. 内容识别:使用智能算法分析网页的 HTML 结构,确定网页的主要内容区域。 2. 文本提取:在识别出内容区域后,提取这些区域的文本内容,包括从 HTML 标签中获取可见文本,同时忽略脚本、样式和其他无需翻译的代码。 3. 预处理:对提取出的文本进行处理,清除不必要的空格、特殊字符和格式信息,进行标准化。 4. 翻译调用:将预处理后的文本拼接到 Prompt 模板中请求相关模型的 API 进行翻译。 5. 结果整合:翻译完成后,将原文和译文对照整合回网页、字幕中,常见的展示形式有原文保持不变,译文以悬浮框、下划线注释或平行文本呈现。 6. 用户界面交互:用户可通过鼠标悬停、点击等操作控制翻译的显示与否,工具会根据用户操作实时显示或隐藏译文。 另外,在获取网页内容时,初版提示词实验中对大模型对话产品的外链解析能力依赖较大,但这种方式易受平台反爬机制制裁。转换思路,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时,可拿着初版提示词询问 AI 来确定需要插件获取哪些网页元素。例如 SeeAct 能力可以在多种不同网站上识别网页上的各种元素,执行不同任务。
2025-04-15
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
mcp 的内容
MCP(模型上下文协议)是一种创新的开放协议,由 Anthropic 公司在 2024 年 11 月推出并开源。 其主要特点和功能包括: 统一了交互标准,是链接所有 AI 应用与工具的桥梁,兼容所有 AI 应用。 具有三大功能:工具(Tools),底层使用 Function call 实现,与 OpenAI 格式兼容;资源(Resources),为 AI 提供参考信息;提示词(Prompts),预设对话模板。 主要接口路径包括获取工具列表、调用工具、获取资源列表、读取资源内容、获取提示词列表、获取提示词内容等。 转换步骤包括客户端向 MCP 服务器请求工具列表,将 MCP 工具定义转换为 Function call 格式,发送 Function Call 定义给 LLM,接收 LLM 生成的 Function call,将 Function call 转为 MCP 工具调用,发送工具调用结果给 LLM。 MCP 就像一个“转接头”或“通用插座”,其核心作用是统一不同外部服务,通过标准化接口与 AI 模型对接。它与传统 API 的关键区别在于: 单一协议:MCP 像一个统一接口,只要一次整合,就能连接多个服务。 动态发现:AI 模型能自动识别并使用可用的工具,不用提前写死每个接口。 双向通信:MCP 支持类似 WebSockets 的实时双向通信,模型不仅能查询数据,还能主动触发操作。 MCP 最早由 Anthropic 公司开发,目的是帮助 AI 模型(如 Claude)更容易地连接工具和数据源,现在已成为一个开放协议,被越来越多的企业和开发者采用,逐渐成为 AI 与工具互动的新标准。 官方文档:https://modelcontextprotocol.io/
2025-04-13
知识库中的LangChain和LangGraph的内容有哪些 ?
以下是关于 LangChain 和 LangGraph 的相关内容: LangChain: LangChain 是一个由 Harrison Chase 开发的开源 Python 库,旨在支持使用大型语言模型(LLM)和外部资源(如数据源或语言处理系统)开发应用程序。 它提供了标准的接口,与其他工具集成,并为常见应用程序提供端到端链。 设计主张集中在模块化组件上,这些组件提供用于使用 LLM 的行为抽象,并为每个抽象提供实现的集合,从而允许开发人员构造新链或实现现成的链。 LangChain 和 RAG 的关系: LangChain 是一个用于构建高级语言模型应用程序的框架,提供了实现 RAG 所必需的工具和组件。 RAG 即检索增强生成,是一种结合了检索(检索外部知识库中相关信息)和生成(利用 LLM 生成文本)的技术。 LangChain 作为框架,与 RAG 的关系包括:是框架与技术的关系,允许通过模块化组件构建 RAG 应用程序,简化开发过程,提高性能,支持构建复杂的 RAG 应用。 关于大模型 RAG 应用中的 LangChain: 有从产品视角出发的分享,包括项目背景、初步体验和评测结果等。 预计会分成 3 篇分享,分别是 LangChain 框架初体验、调优思路分享、如何测评。
2025-04-12