大模型使用应用系统数据可以通过检索增强生成(Retrieval Augmented Generation,RAG)技术来实现。
RAG 是一种结合检索和生成的技术,能够让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。其基本流程为:首先,当用户给出输入,如问题或话题,RAG 会从数据源(如网页、文档或数据库记录)中检索出相关的文本片段,这些片段称为上下文。然后,RAG 将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望的输出,如答案或摘要。最后,RAG 从大模型的输出中提取或格式化所需信息返回给用户。
从大模型的整体架构来看,其分为以下几层:
原创AI小智AI小智2023-12-11 08:10发表于湖北AI大模型能够处理广泛主题的文本生成,但模型知识只能基于它们训练时使用的公开数据。如果你想构建能够利用私有数据或实时数据进行推理的AI应用,你需要用特定的信息来增强模型的知识。将相关信息检索并插入到模型的输入中,即检索增强生成(Retrieval Augmented Generation,RAG)。在本文中,我们将介绍如何使用LangChain开发一个简单的RAG问答应用。我们将依次介绍典型的问答架构,讨论相关的LangChain组件,并展示如何跟踪和理解我们的应用。[heading3]RAG的基本概念[content]RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。
原创AI小智AI小智2023-12-11 08:10发表于湖北AI大模型能够处理广泛主题的文本生成,但模型知识只能基于它们训练时使用的公开数据。如果你想构建能够利用私有数据或实时数据进行推理的AI应用,你需要用特定的信息来增强模型的知识。将相关信息检索并插入到模型的输入中,即检索增强生成(Retrieval Augmented Generation,RAG)。在本文中,我们将介绍如何使用LangChain开发一个简单的RAG问答应用。我们将依次介绍典型的问答架构,讨论相关的LangChain组件,并展示如何跟踪和理解我们的应用。[heading2]RAG的基本概念[content]RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。
首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧