Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stable diffusion

Answer

稳定扩散(Stable Diffusion)是一种扩散模型的变体,最初称为潜在扩散模型(Latent Diffusion Models)。

在传统扩散模型中,反向扩散过程通过 U-Net 结构将全尺寸图像逐步传递以获得去噪结果,但存在计算效率挑战。为解决此问题,研究人员提出了稳定扩散。

其核心组件包括:

  1. CLIP:将用户输入的 Prompt 文本转化成 text embedding。
  2. VAE Encoder-Decoder。
  3. UNET:进行迭代降噪,在文本引导下进行多轮预测。

稳定扩散的运作方式是消除图像中的噪点。比如在太暗情况下拍照产生的颗粒状即噪点,它比手机图像编辑器中的噪点消除滑块复杂得多,它了解世界和书面语言来指导噪点消除过程。

稳定扩散是逐步去除噪点的,有“推理步骤”滑块。

ComfyUI 使用预训练的扩散模型(如 Stable Diffusion 模型)作为核心,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等模型。当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示以捕捉语义信息。

在 ComfyUI 的节点化界面中,每一步操作可通过不同模块实现,用户可控制潜在空间中的操作(如调度器和噪声选择)、U-Net 中的推理步骤(通过去噪模块实现)以及条件输入(通过文本提示或图像引导)。

稳定扩散的相关模型有 SD1.5、SDXL 等,训练方法有 DreamBooth 等。模型格式有.pt 和.safetensor,还有融合模型等形式。训练要求方面,SD1.5 需 12G VARM,SDXL 需 16G VARM。

Content generated by AI large model, please carefully verify (powered by aily)

References

第二课 《ComfyUI基础知识》 By 郭佑萌 @ ?WaytoAGI 2024.8.15 .pdf

‎的去噪结果。然而,这种迭代性质在计算效率上带来了挑战,特别是在处理大尺寸图像和‎大量扩散步骤(T)时。在采样过程中,从高斯噪声中去噪图像可能需要很长时间。为了解‎决这一问题,一组研究人员提出了一种新的方法,称为稳定扩散(Stable Diffusion),‎最初称为潜在扩散模型(Latent Diffusion Models)‎Stable Diffusion‎Stable Diffusion是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模[heading1]‎型”(Latent Diffusion Models)[content]‎CLIP‎将用户输入的Prompt文本转化成text embedding‎核心的组件‎VAE Encoder-Decoder‎UNET‎UNET进行迭代降噪,在文本引导下进行多轮预测‎High-Resolution Image Synthesis with Latent Diffusion Models‎ComfyUI存放路径:models/checkpoints/‎SD1.5‎SD基础预训练模型‎SDXL‎SD1.5‎模型实例‎SDXL‎训练方法‎DreamBooth,by Google‎EMA-only&pruned VS Full‎FP16&FP32‎格式‎.pt VS.safetensor‎Bake in VAE‎模型自带已适配的VAE‎SD微调模型‎概念学习‎Checkpoint‎作用‎source:stable-diffusion-art.com/models/#How_are_models_created‎1puppy‎训练要求‎sd1.5‎12G VARM‎SDXL‎16G VARM‎The merged model sits between the realistic F222 and the anime Anything V3‎styles.It is a very good model for generating illustration art with human figures.‎(source:stable-diffusion-art.com/models/#Example_of_a_merged_model)‎融合模型‎checkpoint+checkpoint‎Lora+Lora‎形式‎checkpoint+Lora‎Baking VAE

稳定扩散(Stable Diffusion)是如何运作的

如果您曾尝试在太暗的情况下拍照,而拍出的照片全是颗粒状,那么这种颗粒状就是图像中“噪点”的一个例子。我们使用Stable Diffusion来生成艺术作品,但它实际上在幕后所做的是“清理”图像!不过,它比手机图像编辑器中的噪点消除滑块复杂得多。它实际上了解世界的样子、了解书面语言,并利用这些来指导(噪点消除)过程。例如,想象一下,如果我给了下面左边的图像给一位熟练的平面艺术家,并告诉他们这是一幅以H.R。Giger(瑞士画家、雕塑家与布景师,《异形》中的外星生物就是他的作品)的风格描绘的外星人弹吉他的画。我打赌他们可以精心清理它,创造出像右图那样的东西。(这些是稳定扩散的实际图像!)艺术家会利用他们对Giger的艺术作品的了解,以及对世界的了解(例如吉他应该是什么样子以及如何弹奏)来做到这一点。稳定扩散本质上是在做同样的事情![heading2]“推理步骤”[content]你熟悉大多数艺术生成工具中的“推理步骤”滑块吗?稳定扩散是逐步去除噪点的。这是一个运行25步的例子:外星吉他手的例子更有意义,因为你可以更清楚地看出它应该是什么样子的……但在上图中,起始图像看起来完全无法辨认!实际上,这个充满噪点的外星人例子其实是从过程的大约一半开始取的——它(最开始的图像)实际上也是从完全的噪点开始的!

ComfyUI的生图原理 副本

结合ComfyUI的生图原理,这张图展示了扩散模型中的加噪和去噪过程。在ComfyUI的节点化界面中,每一步的操作都可以通过不同的模块来实现,用户可以控制潜在空间中的操作(如调度器和噪声的选择)、U-Net中的推理步骤(通过去噪模块实现)、以及条件输入(通过文本提示或图像引导)。[heading1]一、基础模型[content]ComfyUI使用预训练的扩散模型作为其核心,通常是Stable Diffusion模型。这些模型通过大量图像和文本对的训练,学会了将文本描述与视觉概念关联起来。其中包括SD1.5、SD2.0、SDXL、SD3、FLUX等模型。[heading1]二、文本编码[content]当用户输入文本提示时,ComfyUI首先使用CLIP(Contrastive Language-Image Pre-training)文本编码器将文本转换为向量表示。这个向量捕捉了文本的语义信息。

Others are asking
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion是runway和goole联合开的吗
Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。 Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。 围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28