Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何零基础入门

Answer

以下是零基础入门 AI 的一些建议:

  1. 学习 Cursor:
  2. 成为 AI 提示词工程师:
    • 岗位技能要求包括市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。
    • 零基础小白学习建议:找网上的基础课程,看科普类教程,阅读 OpenAI 的文档以理解参数作用。
    • 推荐练手的 Prompt 工具和相关教程文档。
  3. 学习 Stable Diffusion:
    • 可参考 Nenly 发布的零基础入门课及配套学习文档。
    • 了解安装攻略,包括如何安装、启动软件。
    • 下载课程内提及的模型文件、扩展插件及所需素材。
Content generated by AI large model, please carefully verify (powered by aily)

References

张梦飞:0编程基础入门Cursor极简使用指南

编程共学直播文档,公众号:Equity AI欢迎关注交流1、下载cursor:https://www.cursor.com/2、注册账号,直接拿自己的邮箱登录。google/github/163/qq邮箱,直接接受二维码登录。3、安装中文包插件4、cursor:[【实测有效】3分钟搞定Cursor无限白嫖Claude-3.5和GPT-4o模型的极简方法,写作或编程均可免费使用!](https://mp.weixin.qq.com/s/Bx08oMA8QkFJUfik_4zkFA)需求:做一个贪吃蛇游戏,在网页中玩。5、在设置中Rule for AI配置6、ctrl/cmd+i输入:帮我做一个贪吃蛇游戏,在网页中玩。[heading3]一、清晰表达需求[content]帮我做一个贪吃蛇游戏,这个游戏的规则和逻辑如下:1.游戏界面:游戏在一个矩形的网格上进行,玩家控制一条蛇。2.蛇的移动:蛇会持续移动,玩家可以通过按键控制蛇的移动方向(上、下、左、右)。3.食物:游戏界面上会随机出现食物,蛇需要吃到食物以增长身体。4.增长:每次蛇吃到食物,它的身体就会增加一节。5.死亡条件:撞墙:蛇的头部撞到游戏界面的边界。撞自己:蛇的头部撞到自己的身体。1.得分:吃到食物可以获得分数,分数通常与吃到的食物数量成正比。2.难度递增:随着游戏的进行,蛇的速度可能会逐渐加快,或者食物出现的频率会降低,增加游戏难度。3.游戏结束:当蛇死亡时,游戏结束,玩家可以看到自己的得分。

刘海:「AI 提示词工程师」の 见解和经验分享

市场调研->观察目标群体工作流->创造并拆解需求->选型现有AI解决方案做成产品来解决需求->抽象出来集成为一个互联网APP产品->写PRD->画APP产品原型图->组织团队进行APP产品开发。公司招这个岗位,不会多招其他懂AI的岗位了,所以你等于是需要有比较综合的个人能力,敏捷的产品嗅觉,需求走在用户前面,敢想敢做,这也不是谁都能做得来的,有些人可能内向,可能不善于表达想法,可能只想默默地写代码,我接触过太多这样的程序员了…[heading3]1、零基础小白怎么学?[content]如果你现在真的是0基础小白,推荐你去找找网上的教程,虽然是新领域吧…但是基础课程还是蛮多的,为什么这么说呢,因为AIGC这种不稳定不确定的业务流里面,真正第一波赚钱的是哪些人?不是做应用的吧,卖课的。不过我还是推荐你看一些科普类教程,比如我前几天看到的这个视频做的不错:还有OpenAI的文档也过一下,理解一下每个参数都有哪些作用,为什么要这样设计,不至于面试官一问就触及的知识盲区和认知上限了。推荐有阅读能力的还是读一读官方文档吧,毕竟外面做教程的都有时效性,第二天OpenAI就更新文档,旧的教程就可能废弃了。推荐一些练手的Prompt工具:一些相关教程文档:

Nenly:Stable Diffusion 零基础入门课学习资料汇总

?写在前面Before We Get StartedHey,这里是Nenly。今年的4月份,我发布了一门Stable Diffusion的零基础入门课。到目前为止,有超过100万的朋友跟随这套教程开始接触并学习AI绘画。为了帮助大家更好地“食用”这套教程,我编辑了一套配套的学习文档,作为这个教程的后备“知识库”。这份文档的基本内容包括:随堂素材:软件应用、模型文件、扩展插件以及其他必备素材的下载方式生成信息:课程实践案例的提示词与各项参数内容修订:对原有教程内容的增补,或者是“过期”内容的更正如果你是第一次接触AI绘画,可以将这个文档收藏起来,在学习到每一课的时候搭配里面提及的内容一起学习,相信它会给你带来不少帮助。同时,如果你在学习的过程中有任何问题,欢迎随时通过对应视频底下的留言和这个文档的评论交流。祝你学习愉快!?[heading3]安装攻略[content]第一次用Stable Diffusion?了解如何安装、启动这个软件,从这里开始——[heading3]素材下载[content]课程内提及的所有模型文件、扩展插件以及需要用到的素材,我在这里为你准备了一份——

Others are asking
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
七天入门计划
以下是为您提供的七天入门 AI 的计划建议: 第一天: 开始接触李宏毅的生成式人工智能课程。 资源:在 B 站直接搜索《李宏毅 2024 春《生成式人工智能导论》。 第二天至第十四天: 抽空陆续花 2 周时间学完李宏毅的课程。 第五天: 研究并开始使用 Kimi。 参考资料: 。 抱着每天向 kimi 问 100 个问题的心态,调整自己的思考模式,在工作和生活中养成有问题问 AI 的习惯。您还可以参考公众号文章【每天问 Kimi 们 100 个问题,你就 AI 入门了】。 在学习过程中,建议做好笔记,总结所学知识和心得体会,以便更好地掌握和应用。
2025-04-13
给我提供一份清华大学104页的deepseek从入门到精通的手册的链接
以下是为您找到的与清华大学 DeepSeek 相关的一些资料链接: https://pan.quark.cn/s/56e2713e95f4 https://docs.qq.com/doc/DSG9SWFpjVXI3aHZ1 清华大学 104 页的 DeepSeek 从入门到精通的手册:https://waytoagi.feishu.cn/record/FjWorH (2 月 11 日更新附录)
2025-04-11
给我提供一份清华大学104页的deepseek从入门到精通的手册
以下是为您整合的相关信息: 清华大学出品了《DeepSeek:从入门到精通》的指南,该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等,并探讨了其使用方法,包括推理模型与通用模型的区别、提示语设计策略等,旨在帮助用户更好地掌握这一 AI 工具的使用,提升工作效率和创新能力。您可以通过以下链接获取:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg 。 此外,还有一些相关的更新和资料,如 2 月 11 日更新附录的清华大学 104 页 Deepseek 从入门到精通、1 月 21 日更新热门 AI deepseek 推荐及案例征稿通知、1 月 14 日更新爱好者交流 g 群和微信群、12 月 30 日更新案例 24,25,26 等。 同时还有关于 AI 赋能教学的课程实施流程及案例亮点等内容,如利用 AI 生成开放性问题引发深度思考、通过多维数据分析支持全面客观的判断、通过辩论提升批判性思维和表达能力等。
2025-04-11
入门:Ai绘画
以下是为您提供的 AI 绘画入门相关的资源和教程: 在“通往 AGI 之路介绍.pdf”中,有关于 AI 绘画入门的部分,包括产品工具与案例实战,开箱即用。 以下是一些 B 站的视频教程链接: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?: 还有 SD 新手从 0 入门的 AI 绘画教程,包括以下章节: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet! 您可以通过以上资源进行学习,祝您在 AI 绘画领域学有所成!
2025-04-10
AI入门
以下是为您提供的 AI 入门的相关指导: 一、Python + AI 入门 在深入学习 AI 时,编程可能会让您感到困难,尤其是对于不会代码的朋友。但别担心,这里有一份 20 分钟的简明入门指南,能帮助您更快掌握 Python 和 AI 的相互调用,并在接下来的 20 分钟内完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 关于 Python: Python 就像哆啦 A 梦,拥有装满各种道具的标准库,遇到问题时可直接使用。若标准库道具不够,还能通过 pip 一类的工具从 GitHub 一类的分享代码平台订购新道具。Python 在 AI 领域被广泛使用,遍地是大哥。 关于 OpenAI API: OpenAI 通过两种方式提供服务,一是通过 ChatGPT 提供开箱即用的服务,直接对话即可;二是通过 OpenAI API 提供更加灵活的服务,通过代码调用完成更多自动化任务。 二、JavaScript 的 AI 堆栈入门 尽管当前版本是一个很好的起点,但仍在逐步完善,路线图包括: 1. 交互式 CLI 用于 createaistack,开发人员可选择自己的项目脚手架和依赖项。 2. 用于高级用例的事务性数据库(例如,在问答中保留问题、用户偏好等)。 3. 更多的向量数据库和部署平台选项。 4. 用于开源模型的轻量级微调步骤。 同时,对在创建过程中发挥重要作用的开源项目表示感谢,如 Tailwind、ai sdk、dotenv、Next.js、langchain.js 等。 三、新手学习 AI 的方法 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可根据兴趣选择特定模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-04-10
零基础如何学习AI从而进入AI行业
对于零基础想要学习 AI 从而进入 AI 行业的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI 可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-04-12
介绍一下AI视频的基础知识
以下是关于 AI 视频的基础知识: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词 AI:即人工智能。 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习:一种参照人脑的方法,具有神经网络和神经元,因层数多而称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI:可以生成文本、图片、音频、视频等内容形式。 LLM:大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-04-12
AI的基础知识了解
以下是关于 AI 基础知识的介绍: AI 背景知识: 基础理论:明确人工智能、机器学习、深度学习的定义以及它们之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后进行实践,尝试使用各种产品并分享作品。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2025-04-09
我想从零基础学习成为一名ai产品经理,我该学习哪些知识内容,请把这些知识内容做个排序。
以下是从零基础学习成为一名 AI 产品经理所需学习知识内容的排序: 1. 入门级: 通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:对某一领域有认知,根据需求场景选择解决方案,利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉行业竞争格局与商业运营策略。 3. 落地应用: 有一些成功落地应用的案例,产生商业化价值。 同时,AI 产品经理还需要具备以下技能和知识: 1. 理解产品核心技术:了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能准确评估某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关知识,提升数据分析能力。 此外,了解技术框架,对技术边界有认知,关注场景、痛点、价值也是很重要的。
2025-04-08
我是一名0基础的AI使用者,如果我需要熟练的搭建自己coze来完成一些业务工作,我的学习路径是什么样的?可以为我推荐一个学习计划,包括学习的资料获取途径和资料推荐吗?
以下是为您推荐的从 0 基础学习搭建自己的 Coze 来完成业务工作的学习路径和学习计划: 学习路径: 1. 了解 Coze AI 应用的背景和现状,包括其发展历程、适用场景和当前的局限性。 2. 熟悉创建 AI 应用的操作界面,包括学习业务逻辑和用户界面的搭建。 3. 掌握前端和后端的基础知识,了解其在 Coze 应用中的作用。 4. 学习容器的操作和页面布局技巧。 学习计划: 1. 资料获取途径:可以通过飞书知识库获取相关学习资料。 2. 资料推荐: “90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包含智能纪要和智能章节,详细介绍了 Coze 应用的创建过程、界面讲解、前端与后端基础及界面组件布局、容器操作与页面布局等内容。 (筹划中)「Agent 共学」之“两天学会用 AI 建站”,其中的共学日程表可能会提供相关的学习安排和指导。 在学习过程中,建议您重点熟悉桌面网页版的用户界面,按照资料中的步骤逐步实践,遇到问题及时查阅资料或寻求帮助。祝您学习顺利!
2025-03-31
零基础小包AI学习路径
以下是为零基础的您提供的 AI 学习路径: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,像二师兄这样的案例也可供您参考。二师兄在二月因七彩虹售后群老哥的分享,要了 SD 秋叶安装包,下载了教学视频,迈出 AI 学习的第一步。三月啃完 SD 的所有教程并开始炼丹,四月尝试用 GPT 和 SD 制作图文故事绘本、小说推文的项目,五月加入 Prompt battle 社群,开始 Midjourney 的学习。 如果您是零基础小白,还可以: 找网上的基础课程进行学习。 观看科普类教程。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 利用一些练手的 Prompt 工具。
2025-03-30