Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么快速做一个知识库

Answer

以下是快速创建知识库的方法:

  1. 在 Coze 中创建知识库:
    • 来到个人空间,找到知识库导航栏,点击创建知识库。
    • 选择知识库的格式,目前(2024.06.08)Coze 支持文档、表格(CSV、Excel 等)、图片三种格式。
    • 选择本地文档或问答对选择表格等方式。
    • 选择自定义的文档切割。
    • 数据处理完成后,一个问答对会被切割成一个文档片。
    • 关于使用知识库,可参考教程:大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库
  2. 通过其他方式创建并上传表格数据:
    • API 方式:获取在线 API 的 JSON 数据,将 JSON 数据上传至知识库。在表格格式页签下,选择 API,然后按照以下步骤操作:单击下一步、新增 API、输入网址 URL 并选择数据的更新频率、输入单元名称或使用自动添加的名称、配置数据表信息(包括确认表结构、指定语义匹配字段等)、查看表结构和数据,确认无误后单击下一步、完成上传后单击确定。
    • 自定义方式:手动创建数据表结构和数据。在表格格式页面下,选择自定义,然后按照以下步骤操作:单击下一步、输入单元名称、在表结构区域添加字段、设置列名,并选择指定列字段作为搜索匹配的语义字段、单击确定、单击创建分段,然后在弹出的页面输入字段值,然后单击保存。
  3. 在 FastGPT+OneAPI+COW 中创建知识库:
    • 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/
    • 进入后,点击应用并创建,选择 qwen 模型。
    • 创建知识库。点击知识库 - 选择 qwen - Embedding - 1 点击确认创建。
    • 上传文件,等待处理,直到文本状态是“已就绪”。
    • 回到刚刚创建的应用,关联上创建的知识库。
    • 点击两个发布。之前第一个叫做保存。
    • 点击新建,创建 key。创建后保存同时将 API 根地址最后加上/v1 也保存下来。
    • 回到宝塔,打开【终端】,依次输入以下命令:
      • cd/root
      • git clone https://github.com/zhayujie/chatgpt-on-wechat
      • cd chatgpt-on-wechat/
      • pip install -r requirements.txt
      • pip install -r requirements-optional.txt
Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

讲了一大堆,终于到了实战的环节了。这里我虽然使用Coze举例子,但是我希望可以帮助你举一反三,未来在接触到FastGPT、Dify等等AI Agent工具的时候都能快速的上手知识库组件。因为你了解了RAG的本质之后,无论什么知识库工具,本质都是一个皮而已!这些也是写这篇文章的目的:让你做到知其然,知其所以然[heading2]创建知识库[content]1.来到个人空间,找到知识库导航栏,点击创建知识库这里我想说明的是,知识库是共享资源,也就是你的多个Bot可以引用同一个知识库1.选择知识库的格式,填写一些信息目前(2024.06.08)Coze支持三种格式文档表格(CSV、Excel等)图片(其实就是上传一张图片,然后填写个图片文字说明)这里格式并不重要,重要的是你要看懂上个章节讲的:影响RAG输出质量的因素1.我这里选择本地文档(问答对可以选择表格)[购买后新人常见问题汇总.txt](https://bytedance.feishu.cn/space/api/box/stream/download/all/FNqobmfgBo5eGHxfZJ1cbOJ9n1H?allow_redirect=1)1.选择自定义的文档切割1.数据处理完成当数据处理完成后,你会发现,一个问答对被切割成一了一个文档片[heading2]使用知识库[content]关于使用知识库,大家可以看这篇教程:[大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb),这篇文章已经讲的很详细了,这里就不再赘述了

创建并使用知识库

|上传方式|操作步骤||-|-||API|获取在线API的JSON数据,将JSON数据上传至知识库。<br>1.在表格格式页签下,选择API,然后单击下一步。<br>2.单击新增API。<br>3.输入网址URL并选择数据的更新频率,然后单击下一步。<br>4.输入单元名称或使用自动添加的名称,然后单击下一步。<br>5.配置数据表信息后,单击下一步。<br>5.1.确认表结构:系统已默认获取了表头的列名,你可以自定义修改列名,或删除某一列名。<br>5.2.指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。<br>6.查看表结构和数据,确认无误后单击下一步。<br>7.完成上传后,单击确定。||自定义|手动创建数据表结构和数据。<br>1.在表格格式页面下,选择自定义,然后单击下一步。<br>2.输入单元名称。<br>3.在表结构区域添加字段,单击增加字段添加多个字段。<br>4.设置列名,并选择指定列字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。<br>5.单击确定。<br>6.单击创建分段,然后在弹出的页面输入字段值,然后单击保存。|

张梦飞:【知识库】FastGPT+OneAPI+COW带有知识库的机器人完整教程

1、地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/2、进入后,点击应用并创建,选择qwen模型3、创建知识库。点击知识库-选择qwen-Embedding-1点击确认创建。4、上传文件,等待处理,最后文本状态是“已就绪”就是OK了。5、回到刚刚创建的应用,关联上创建的知识库。6、点击两个发布。之前第一个叫做保存7、点击新建,创建key。创建后保存同时将API根地址最后加上/v1也保存下来。[heading1]七、安装并接入cow[content]1、回到宝塔,打开【终端】继续,一行一行依次粘贴,依次回车:cd/root2、这个注意一定要粘贴完整,这里容易粘贴不全。git clone https://github.com/zhayujie/chatgpt-on-wechat3、出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次4、继续一行一行,依次输入:cd chatgpt-on-wechat/pip install-r requirements.txt5、等待执行完成,如上图后,继续粘贴:pip install-r requirements-optional.txt6、上边的都执行完成后。

Others are asking
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
我想要一个助手,能帮助我快速计算式子
如果您想要一个能帮助快速计算式子的助手,可以通过以下步骤实现: 1. 搭建示例网站: 创建应用:点击打开提供的函数计算应用模板,参考相关图示选择直接部署,并填写获取到的百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消相应位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果,此时网站的右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 此外,零代码自建决策助手可以帮您解决生活中的决策问题,决策链设计包括: 1. 加权得分计算:将每个选项在各个标准上的得分与相应的权重相乘,然后求和,得出每个选项的总加权得分。 2. 机会成本分析:考虑选择每个选项时可能放弃的其他机会。 3. 简单情景分析:为每个选项构想最佳和最坏的情况。 4. 决策矩阵分析:将前面步骤的分析结果汇总到一个表格中,包括预期收益、机会成本、净收益、长期影响和风险评估。 决策阶段包括: 1. 敏感性分析:通过调整不同因素的权重,检验决策是否稳健。 2. 情感检验:反思个人对每个选项的情感反应,并考虑其与理性分析的一致性。 3. 提供最终决策建议:基于前面的所有分析,提出一个综合的建议。 案例——帮你选工作: 假设您是一名在职的产品经理,想跳槽并拿到两个不错的 offer,向决策助手求助。整个流程始于您向决策助手提出问题,决策助手随即要求您提供 offer 的基本信息。在您提供完信息后,决策助手开始定义基本的评估标准,并让您审核,还会根据您的喜好和目标给出权重分配的建议。在您认可权重分配后,决策助手对每个选项进行评分,评分采用 1 到 10 分的制度,涵盖所有评估标准。评分完成后,决策助手会整理出一个清晰的表格,包含各项评估标准的权重以及每个选项在各个标准下的得分。
2025-04-12
物质三态变化图,用什么ai工具能快速绘制?
以下是一些可以快速绘制物质三态变化图的 AI 工具: 1. 麻省理工学院与瑞士巴塞尔大学合作开发的机器学习框架,利用生成式人工智能模型自动绘制物理系统的相图,几乎无需人类监督。 2. 在软件架构设计中,以下工具可用于绘制相关视图,包括物质三态变化图: Lucidchart:流行的在线绘图工具,支持多种图表创建,包括物质三态变化图。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 ArchiMate:开源的建模语言,与 Archi 工具一起使用可创建相关视图。 Enterprise Architect:强大的建模、设计和生成代码的工具。 Microsoft Visio:广泛使用的图表和矢量图形应用程序。 draw.io(现在称为 diagrams.net):免费的在线图表软件。 PlantUML:文本到 UML 的转换工具。 Gliffy:基于云的绘图工具。 Archi:免费的开源工具。 Rational Rose:IBM 的 UML 工具。 此外,Photoshop 2023 Beta 爱国版在某些图像处理和绘图方面也具有一定的能力,但可能不是专门针对物质三态变化图的绘制。
2025-04-11
如何快速上手Cursor、Windsurf、V0.dev、bolt.new、Devin等AI编程产品的经验,能快速转型为AI产品经理?
以下是关于快速上手 Cursor、Windsurf、V0.dev、bolt.new、Devin 等 AI 编程产品并转型为 AI 产品经理的一些经验: 1. 深入理解用户场景和 AI 能力边界:要构建差异化的 AI Native 体验,需要同时对 AI 能力边界和用户场景有深入洞察。 2. 持续迭代产品:在快速变化的模型能力下,避免在每次的基座模型迭代中掉队或被淘汰。 3. 构建良好的模型产品化能力和基础设施:使得应用可以持续收集用户数据以迭代模型。 对于具体的产品: Cursor: 允许用自然语言描述需求,对上下文有深度理解能力,能理解整个项目的结构和依赖关系,进行跨文件的语义分析。 提供智能的代码重构建议,自动诊断和修复常见错误,基于代码自动生成文档。 但要注意,即使有 AI 辅助,当好产品经理也不容易,需要反复沟通和调整。 Devin:作为 2024 年横空出世的产品,预示着软件开发范式的根本转变。 Windsurf、V0.dev、bolt.new 等: 可以使用如 Cursor Composer 构建产品、使用 Bolt.new 构建产品、使用 V0.dev 生成组件等。 此外,国内知名的 AI 全栈开发者 @idoubi 分享了相关使用经验,包括自动补全代码、Debug&&Fix Error、实时对话&&联网搜索、写提示词、写前端页面、截图生成组件、写常用的代码逻辑/函数、代码重构、多语言翻译等方面。同时,对于零代码基础的人员,也有使用相关工具实现想法的方法,如使用 Cursor Composer、Bolt.new、Claude 等构建不同类型的应用。还可以盘点常用的 AI 辅助编程工具和使用场景,如 AI 编辑器(Cursor、Windsurf、Pear Al 等)、编辑器 AI 扩展(Github Copilot、Continue、Cline 等)、UI 组件生成工具(Cursor、V0.dev、Claude、screenshottocode 等)、完整项目构建工具(Cursor、Bolt.new、Replit Agent、Wordware 等)。
2025-04-10
如何快速成为一名ai产品经理
要快速成为一名 AI 产品经理,可以参考以下步骤: 1. 入门级:通过 WaytoAGI 等开源网站或相关课程了解 AI 概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:对某一领域有认知,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉传统互联网中偏功能实现的产品经理和偏商业运营的产品经理的工作,最好能将两者结合。 3. 落地应用级:拥有成功落地应用的案例,产生商业化价值。 同时,对 AI 产品经理的要求是懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 本质上是工具和手段,产品经理要关注的还是场景、痛点、价值。 此外,当 AI 与多维表格结合,为用户带来了更多可能性,任何人都能通过多维表格成为 AI 产品经理。例如在一些活动中,如多维表格 AI Maker Day,参与者来自不同领域和岗位,有着各自的优势和想法,包括产品落地服务、多 Agent 处理任务流、宠物与 AI 结合、AI 绘画精灵等方向。
2025-04-09
我想寻找一个AI模型,能快速读懂视频,并总结成为知识架构的应用或网站
以下为您推荐能快速读懂视频并总结成为知识架构的应用或网站: 百炼大模型平台:其影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,可生成爆款文案,还能根据偏好调试提示词。2025 年 1 月 9 号更新的模型可通过 API 调用纹身 AI 等,Windows 用户可在左下角开始运行输入命令提示符进行本地调用,但生成过程较缓慢。 应用场景:包括商品信息图片生成淘宝上架规格参数、智能手表文案生成、社交媒体内容生成、合同提取、拍照搜题、图片转换、模特换装等。 提供 AI 硬件底层能力,AI 拍立得相机拍照可快速成诗并打印,其对接多模态能力可通过智能体应用或工作流形式的 API 调用。 开源使用:有开源地址,可下载到本地,配置阿里云百炼平台的 API key 及 appid 实现场景,运行项目需特定 Python 包和依赖,可新建应用获取 appid,拍照时需设置 API key。 此外,关于 AI 技术原理与框架的相关知识: 生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不属于大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-04-09
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
我是一个实体店家,我怎么能利用AI产生内容进而帮助我在流量平台拓客
以下是一些利用 AI 为实体店在流量平台拓客的方法和思路: 1. 借助抖音平台:利用抖音对实体商家的流量扶持,购买 AI 抖音发广告的软件。这需要懂软件开发的技术人员,并且熟悉抖音。 2. 利用 AI 私域做客户培育/用户旅程:通过 AI 软件自动跟进和培育客户,需求是懂软件开发的技术人员且熟悉微信。 3. 打造特定领域的 AI 工具:比如针对法律、健康、财务、教育、销售、HR 等领域,开发如“AI 合同助手”“AI 健康管家”“AI 课程生成器”“AI 销售助理”等垂类工具。 4. 作为引流者:把 AI 工具做成“公众号插件”“小程序入口”或“微信机器人”进行推广,获取分成。 5. 参考优秀作品:如商业综合体 AI 伴侣、客流诊断师、跨境商品不求人、公私域全流程内容规划师、公众号 10W+爆文工厂、营销内容文案合规检查、提示词定制神器、Nicole 咖啡门店分析师、3C 软文文案撰写、网购评论助手、万能 AI 营销助手、贴心平替推荐精灵、产品一键生成一篇高质量的知乎种草文、One thing AI 目标达成教练、润物等,从中获取灵感和思路。
2025-04-15
我想找一个好用的ai绘画,有什么推荐吗
以下是为您推荐的一些好用的 AI 绘画平台: 1. Midjourney:综合体验较好,尤其是其 v6 版本。 2. 可灵 AI:成熟的综合类工具。 3. 即梦 AI:成熟的综合类工具。 4. Krea:集成平台。 5. MewXAI:操作简单,功能丰富,包括 MX 绘画、MX Cute、MJ 绘画、边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等。访问地址:https://www.mewxai.cn/
2025-04-15
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
我是一个前端开发人员,在工作中,我可以使用哪些ai工具提效
以下是一些适合前端开发人员在工作中提效的 AI 工具: 1. 辅助编程工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手。 Codeium:通过提供代码建议等帮助提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 测试用例生成:AI 在生成测试用例方面具有显著优势,能自动化和智能化生成高覆盖率的测试用例,减少人工编写时间和成本。通过合理应用 AI 工具,可提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 3. 网页原型图生成工具: 即时设计:https://js.design/ ,可在线使用的「专业 UI 设计工具」,注重云端文件管理和团队协作。 V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统,能通过文本或图像生成代码化的用户界面。 Wix: ,用户友好,无需编码知识即可创建和自定义网站,提供广泛模板和设计选择,以及多种功能。 Dora:https://www.dora.run/ ,通过一个 prompt,借助 AI 3D 动画生成强大网站。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-14