Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

全部懂AI的人怎么学AI?

Answer

以下是关于如何学习 AI 的一些建议:

  1. 对于纯 AI 小白,可以参考《雪梅 May 的 AI 学习日记》。学习模式是输入→模仿→自发创造。学习时不必直接复用日记中的学习内容,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。学习时间较为灵活,有空时进行即可。保持良好的学习状态有助于学习,不必因觉得难以做到而有心理压力。学习资源免费开源。
  2. 与“AI+教育”行业前辈交流得出:学习通常具有功利导向,才有强烈付费意愿。“突破性新技术+垂直行业知识”组合能为学习者带来更高投入产出比。在 AI 领域,让 AI 工程师懂行业,让行业专家懂 AI,投入产出比很高,但要找到高价值应用场景。现阶段“AI 口嗨者众,AI 实干家寡”的主要原因是缺乏足够正反馈的高价值应用场景。
  3. 周鸿祎认为,学习 AI 要先建立 AI 的信仰,使用 AI 产品建立基本了解。对于小公司,不建议碰基础设施,可考虑为当地企业做 AI 训练,提供算力支持,但需要服务团队,包括整理知识、寻找业务场景、做垂直训练、微调及业务融合,还应找合作伙伴。
Content generated by AI large model, please carefully verify (powered by aily)

References

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友

说明:1.适合纯AI小白:如果你还在观望AI,不知道从何入手,可以参考我这个日记。你可以先看左边的目录,会发现我现在已经快到100天了,在这个时间跨度里,我从一开始的到处看看到现在觉得自己已经走在了一条学习AI的轨道上。2.学习模式是什么:我平时有记录笔记的习惯,所以积累了这份AI学习日记。我最近整理复盘了这将近100天记录的日记后,我发现我学习AI的模式是输入→模仿→自发创造。如果你没有自信一开始就用费曼学习法来接触AI,那你可以试试我这个实践出来的学习模式。3.学习内容:我日记里的学习内容你可以不用直接复用,因为AI的节奏太快了,很多学习的材料在半年后的现在可能已经不适用了。比如coze之前共学的那些课程,你会发现coze已经改版了,如果你按照老课程来模仿,产品功能不一样了,对你来说会有转换的门槛。你可以去waytoAGI社区发现你自己感兴趣的AI领域,去学习你自己想学的最新的内容。4.有时间学吗:在半年多的时间跨度中,其中有100天在学习AI,所以这里的DAY(天数)不是每天依次进行,而是有空的时候学习。目前我进行到了90天,希望自己能够坚持满100天,甚至更多时间。5.学习状态:我在2024年保持了比较好的学习状态,有意愿和动力也能头脑清醒的学进去东西。这种状态不仅体现在学AI,我在2024年还看了33本书,像《穷查理宝典》这样的大部头都能看进去。所以如果你看到这个100天日记觉得自己很难做到,那是学习状态没有到最好,不用有心里压力,能学多少算多少就行。6.有费用吗:本日记中学习资源的内容都是免费开源的,真的很感谢这些把信息开源的人,这样会AI的人才会越来越多。我也是秉持这个理念,把我的学习日记开源了

笔记:与AI+教育前辈聊天

昨天跟一位“AI+教育”行业的前辈,聊了下“学习AI”相关的问题,下面是一些小的结论:1、学习是反人性的,所以通常只有功利导向的“学习”,才会带来强烈的付费意愿。比如,在真实的K12买课场景中,很多家长根本不在乎孩子「能力」是否提升,他们更在乎老师能不能押对考试的题目,直接让孩子多拿「分数」。2、“突破性新技术+垂直行业知识”的组合,一般能为学习者带来更高的投入产出比。拿程序员举例,如果单纯看996的新闻,还以为中国程序员早已供大于求了。但在很多很大的行业里,懂该行业知识的程序员缺口大的不得了,很多时候只能找高潜应届生从头开始培养。典型的有,银行嗷嗷缺金融科技人才,车企嗷嗷缺智能网联人才,智能制造行业嗷嗷缺数字化转型技术人才。3、放在AI领域,则意味着「让AI工程师懂行业,让行业专家懂AI」,这个学习的投入产出比可以做到很高。但前提是,一定要找到AI在该行业的高价值应用场景。找到之后,AI工程师会发现,如果说自己的技术在那个领域创造的价值是西瓜,那么在手头的这个领域创造的价值可能就只是芝麻,孰轻孰重,他会知道怎么选;行业专家也会发现,在他的专业领域,很多事情的效率可以提升10倍以上,他不仅有机会真正做到“一个人就是一支队伍”,还可以为组织为行业复制出无数个「能达到80%水平的自己」。4、现阶段,之所以「AI口嗨者众,AI实干家寡」,最主要的原因是没有能带来足够正反馈的高价值应用场景。

周鸿祎免费课AI系列第一讲

周鸿祎:我纠正一下,刚才那个小伙子给我挖了一个坑,我真的不是中国最懂AI的人,中国有很多懂AI的人,人家作为科学家不爱表达,不说。还有很多懂AI的人不屑于跟你们交流,还有很多懂AI的人他讲你也听不懂。我只是恰好喜欢思考,用普通老百姓的语言能够把一些东西会的由浅入深。第二,我觉得要弄AI就上我的课,我今天讲了AI认知方面的东西,先建立AI的信仰,然后要去使用一些AI的产品,建立一些基本的了解,下场我专门讲企业级AI如何做,你就参加下一节课好了。提问:我是在北京做拍卖公司的,江苏有一个数字科技公司。所以,我想问一下,做我们普通企业,对底层的基础设施还有没有什么样的一个前景?底层的基础设施和应用场景不是两个入口吗?周鸿祎:小公司肯定就不要碰基础设施了,基础设施现在要么是做云,在云端有很多显卡,智算中心的服务是非常巨大的,我不觉得会有小公司的机会。但是,如果给当地的企业做AI训练,提供一些算力支持,我觉得可能是有一定的机会。但是,你就要提供一支服务团队,因为你光有算力是不够的,当地的企业需要有人帮他整理知识,寻找业务场景,做垂直训练,做微调,最后做业务的融合,你得有一支服务的力量才能把你的算力能发挥出来,所以你应该找个合作伙伴。提问:中国互联网现在过度移动化,导致PC上,很多巨头网站,像新浪、京东,PC端网站十几年都不更新了。但是,我们看到AI也好,国外很多创新的产品也好,都是从PC端开始参与的,这个趋势在您看来是一个不好的,是未来会扭转的,还是说中国来说就是一个合理的现象?

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20