Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI目前能帮企业做什么

Answer

AI 目前能为企业带来多方面的帮助,主要包括以下几个方面:

  1. 工作流程优化:许多公司将 AI 融入工作流程,实现工作流程自动化,例如 ServiceNow 通过 AI 驱动的 Now Assist 实现了近 20%的事件避免率,Palo Alto Networks 利用 AI 降低了处理费用的成本,Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。成千上万的公司正在将 AI 整合到他们的工作流程中,以扩张规模和降低成本。
  2. 业务拓展与管理变革:未来的公司会加速步入数字化,业务的拓展更多依托于算力的增加,不用加人,加 AI 即可,管理沟通成本很低。会建立更有效的公司运转机制,可能会有越来越多的特别高效的小团队公司出现。
  3. 人和 AI 协同工作模式:根据 AI 使用的多少,人和 AI 协同的方式分为嵌入式模式、协作模式和智能体模式。基于目前 AI 发展的程度,协作模式是最常使用的。
  4. 具体应用程序:
    • 聊天机器人:分为信息型和实用型,可大幅减少客户服务方面的人力成本。
    • AI 撰写内容:如 ChatGPT 等工具能快速生成高质量文本内容,提高内容创作效率。
    • 语音搜索优化:适应语音搜索普及的趋势,优化网站以提高理解度。
    • 网站个性化:为每位访客提供定制化体验,增强客户参与度和忠诚度。
    • 利用 AI 分析客户数据:通过机器学习算法发现模式和趋势,为营销活动或个性化体验提供洞见。
    • 社交媒体管理与情绪分析:深入了解客户反馈,调整产品和营销策略。
Content generated by AI large model, please carefully verify (powered by aily)

References

红杉|AI 50 未来公司

原文链接:https://www.sequoiacap.com/article/ai-50-2024/发表时间:2024-4-11作者:Konstantine Buhler编译:Z Potentials去年,生成式AI从不引人注意的地方走到了AI 50强榜单的前列。今年,随着我们看到企业用户和消费者的AI生产力开始大幅提高,它成为前沿和中心。尽管2023年美国的大部分AI风投都流向了基础设施领域——其中60%流向了最大的大语言模型(LLM)提供商,但应用公司仍在AI 50强榜单中占据主导地位。与此同时,我们开始看到AI如何为公司赋能。如今,许多公司正将AI融入其工作流程,以此来快速达成KPI。我们看到大公司正通过将AI融入其产品的方式而获益。工作流程自动化平台ServiceNow通过AI驱动的Now Assist,实现了近20%的事件避免率。Palo Alto Networks利用AI降低了处理费用的成本。Hubspot利用AI扩大了能够支持的用户规模。瑞典金融科技公司Klarna最近宣布,通过将AI融入用户支持,他们在运行率方面节省了4000多万美元。现在,成千上万的公司正在将AI整合到他们的工作流程中,以扩张规模和降低成本。AI 50强企业正在快速进化。不远的将来,我们有望看到UX和UI围绕AI的功能进行重新设计。在更好、更廉价地复制现有功能之后,我们将开发全新的用户界面,以提供有价值的新体验。

一个希望有点意思的AI分享(三)

根据AI使用的多少,人和AI协同的方式也可以分为三种,最简单的是嵌入式模式,工作还是人来做,只是在一些步骤上利用AI进行搜索或者提供一些建议;第二种是协作模式,由AI来完成一些完整的步骤,比如说对于写文章来说让AI完成初稿,人接着来进行调整;第三种是智能体模式,人只是设定目标和进行监督,整个工作流程都由AI来完成。基于目前AI发展的程度,协作模式是最常使用的。AI可以成为我们的有力伙伴,作为我们普通人的“外挂”。这里是ChatGPT给出的AI聊天机器人可以完成的任务,可以给大家做个参考。事实上,结合有效的提示词,ChatGPT目前能做的事情远远超过这个列表,而且AI工具也远远不止ChatGPT一种。这里是个人常用的任务所对应的一些国内外的AI产品,感兴趣的同学可以自行去了解尝试。要说明的是,AI的产品有很多,远不止列出的这几个,而且更新变化也很快,几乎每一天都有更新更好的不同垂直领域的AI产品出现。这是一个令人兴奋的时代。因为AI包含的内容太丰富,发展也太快,我们能涉及讨论的只是很小一部分。在这里推荐一个网站,通往AGI之路,这个网站上有大量关于AI的技术、产品、教程和案例等等信息,而且在不断更新中,非常推荐大家去学习了解。也向网站的发起者和维护者们表示敬意。AI不只是个人的“外挂”,对于公司来说,AI也会带来很多变革。特别是,未来的公司会加速步入数字化,AI会变成实在的生产力来创造价值。在过去,你需要拓展业务,就意味着需要扩充人力增加人手,这往往会带来职能部门的增多和管理成本的提升;在未来,业务的拓展更多的会依托于算力的增加,不用加人,加AI即可,管理沟通成本很低。会建立更有效的公司运转机制,可能会有越来越多的特别高效的小团队公司出现。这意味着目前并没有被满足的很多需求,未来有机会被低成本的小团队来满足。

2024年小型企业的人工智能应用新纪元

随着人工智能(AI)技术的迅猛发展,2023年无疑成为小型企业在运用这一技术方面的关键一年。小型企业现在可以通过多种AI应用程序来提高效率、优化营销策略,甚至改进客户服务。以下是七个重要的AI应用程序,它们正成为推动小型企业转型的力量。[heading3]聊天机器人:客户服务的新前沿[content]聊天机器人,尤其是在企业网站上使用的,已经成为提供客户服务的新途径。分为信息型和实用型两种,信息型机器人主要用于回答常见问题,而实用型机器人则更倾向于执行特定的任务,如处理订单或安排约会。这些工具的引入,无疑将大幅减少小型企业在客户服务方面的人力成本。[heading3]AI撰写内容:内容创作的革命[content]对于内容创作有困难或资源有限的小型企业来说,AI撰写工具(如ChatGPT)提供了一种高效的解决方案。这些工具能够快速生成高质量的文本内容,如论文、博客和白皮书,极大地提高了内容创作的效率。[heading3]语音搜索优化:迎合未来趋势[content]随着语音搜索的普及,小型企业必须优化其网站以适应这种新兴的搜索方式。这涉及到确保网站内容的清晰度和准确性,以及使用架构标记等技术来提高语音助手的理解度。[heading3]网站个性化:提升客户体验[content]通过个性化技术,小型企业可以在网站上为每位访客提供定制化体验。从使用名字问候访客到根据访客的浏览历史推荐产品,这些策略都有助于增强客户的参与度和忠诚度。[heading3]利用AI分析客户数据:预测性分析的应用[content]利用AI进行客户数据分析可以使小型企业从中发现模式和趋势,从而为营销活动或个性化体验提供有价值的洞见。这种所谓的预测性分析是通过机器学习算法来实现的,可以帮助企业更有效地定位其目标客户。[heading3]社交媒体管理与情绪分析:深入了解客户反馈[content]情绪分析工具使小型企业能够深入了解其在社交媒体上的形象。通过分析客户的评论和反馈,企业可以更好地理解目标受众的看法,从而调整其产品和营销策略。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
想要做一节讲如何用智能体做企业数字化转型的课程,如何设计
以下是关于如何设计用智能体做企业数字化转型课程的建议: 一、参考案例 1. 李国宝的相关经验 具有丰富的从业经验,包括通信工程、数据通信网络培训、创业、网络安全解决方案及培训、AI 课程开发与培训等。 开发过面向不同群体的 AI 课程,如《数字化转型实践》面向传统企业数字化、AI 赋能转型。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用课程 从零开始教学做应用界面,先基础教学,再涉及特定应用。 介绍当前承接业务,包括辅导、培训、定制及企业 AI 落地等。 挖掘用户对 AI 应用的功能需求,如对交互界面的需求。 二、课程设计要点 1. 对于企业管理者 AI 辅助决策:在小规模决策中使用 AI 分析工具,以其分析结果作为决策参考。 员工培训计划:制定 AI 工具使用的培训计划,帮助团队成员了解日常工作中如何有效利用 AI。 流程优化:识别公司中可能受益于 AI 自动化的重复性任务,从小流程开始测试 AI 解决方案的效果。 AI 伦理和政策:制定公司的 AI 使用政策,确保 AI 应用符合伦理标准和法律要求。 2. 对于教育工作者 AI 辅助教案设计:尝试使用 AI 帮助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 个性化学习路径:探索使用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单的课程模块,教导学生了解 AI 基础知识、应用领域及其对社会的影响。 三、注意事项 无论面向哪个群体,都应记住:与 AI 协作是一个学习过程。从小处着手,保持好奇心和开放态度,会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。最重要的是,始终保持批判性思维,将 AI 视为强大的工具,而不是完全依赖的解决方案。
2025-04-18
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
AI在企业落地
企业落地 AI 可以参考以下内容: Anthropic 在 AI Engineer Summit 2025 上分享了相关最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。例如 Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 影刀 RPA+AI Power 方面:大模型有输入和输出限制,AI Power 集成丰富组件及技能组件可拓展 AI 服务能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现自动化操作。其具有无缝多样的使用方式,如嵌入方式包括网页分享、对话助理、API 集成等。企业系统分散,AI Power 提供多种调用方式方便企业灵活选择接入方式。此外,影刀 AI Power 为企业提供教学培训、技术答疑、场景共创等贴身服务支持,帮助企业把 AI 落地。 此外,相关知识库还介绍了面向学习者、创作者和企业的不同服务: 面向学习者:社区提供清晰学习路径,学习者通过丰富课程、活动和竞赛提升自己,积累能力成为高素质 AI 人才。 面向创作者:创作者掌握 AI 技术利用社区资源创作,满足企业需求,为社区发展注入活力。 面向企业:链接 AI 产品和传统企业,通过与社区合作获得优质内容与服务,从学习者中获取潜在流量。社区合作实践为学习者和创作者提供应用场景和技术经验。
2025-04-12
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
企业场景下最常用的工作流
在企业场景下,工作流是一种灵活的智能体编排方式,将业务过程中的任务按规则和顺序组织执行,降低任务复杂度和不确定性,减少对提示词工程和模型推理能力的依赖,提高大语言模型应用面向复杂任务的性能、稳定性和可解释性。工作流是智能体平台最核心强大的部分,衡量一个 AI 智能体的含金量,除大模型能力外,大部分业务价值体现在工作流设计里。 工作流的典型场景包括: 入门场景: 仅添加一个节点构建简单工作流,如通过插件节点内的插件能力自定义工作流,使用获取新闻插件构建获取新闻列表的工作流,详细配置教程可参见。 使用大语言模型(LLM)节点接收并处理用户问题,详细配置教程可参见。 使用 Code 节点生成随机数,详细配置教程可参见。 进阶场景: 通过多节点组合构建逻辑较复杂的工作流,如先通过插件能力进行关键词搜索、然后通过 Code 节点过滤指定信息、最后通过插件能力获取信息详情,详细配置教程可参见。 通过条件判断识别用户意图,例如通过 LLM 节点处理用户消息,将消息分为不同类型,然后通过 Condition 节点分别处理不同类型的用户消息,详细配置教程可参见。 常见的 AI Workflow 开发平台有: Coze:新一代 AI Bot 开发平台,集成了丰富的插件工具,国际版和国内版均有。 Dify:开源平台,支持自定义和插件。 腾讯元器。 FastGPT:国内知名,支持自定义流程。 影刀&zapier。 Leap。 Betteryeah:立足 RPA 场景,用 AI 将用户需求生成工作流,并通过 RPA 自动化,产品形态与 Coze 相似,是企业级的 AI 应用开发平台,无论团队编程技能如何,都能快速创建由 AI 驱动的 Agents、知识库、工作流和任务。 Flowise:快速实现智能体搭建。 BISHENG:主攻 tob 场景的开源 LLM 搭建平台,与 fastgpt 功能类似,但面向的客户不同,整体功能和部署成本更重。 Agent 构建平台有豆包、文心一言、星火助手、kimi.ai 等。由于 Coze 具有拓展强、好上手、不用出国等优点,本教程的工作流以 Coze 为主。
2025-04-09
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
完全免費的AI工具目前有哪些
目前完全免费的 AI 工具包括: 1. 麻省理工学院(MIT)为 8 18 岁孩子推出的 AI 课程 Day of AI,包含在 MIT 的 RAISE 项目中。不过该课程资源主要面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。 2. 元子提到的一些能让普通人最低成本直接上手试的 AI 工具,包括聊天工具、绘画工具、视频工具、音乐工具等,但未具体指明具体的工具名称。
2025-04-13
gemini-2.5目前是什么水平
Gemini 2.5 是一款全能思考模型,具有以下特点和优势: 多领域达到 SOTA 水平,逻辑、代码、任务处理能力大幅提升。 支持 100 万 tokens 上下文,具备强大的阅读能力。 统一架构原生多模态支持,图文音码协同处理,并非外挂而是原生融合。 您可以通过以下链接获取更多详细信息:https://www.xiaohu.ai/c/xiaohuai/googlegemini25proexperimental
2025-04-13
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13