Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

论文撰写的提示词

Answer

以下是关于论文撰写提示词的相关内容:

  1. 通用原则:

    • 目标明确:确保每一步的目标清晰,AI 需要明确指导以产生相关和有价值的输出。
    • 逻辑性:在所有提示策略中,逻辑性是关键,清晰、结构化的提示有助于 AI 更有效地生成输出。
    • 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按清晰步骤进行至关重要。
    • 考虑变量:在某些情境中尤为重要,需考虑可能影响结果的所有因素。
  2. 实验示例:

    • 运用 CoD 将文章做摘要的实验,通过 GPT 的五轮输出,以中英文两种方式撰写提示词,个人观点认为英文提示词加上中文输出的方式效果较好,密度等级 4 的结果较让人满意。
  3. 学术场景数据处理:

    • 论文内容总结:大模型结合有效的提示词可迅速总结概括文档,节省时间,如 GLM-4-Plus 结合良好的提示词能帮助学生快速总结论文内容。
    • 论文内容翻译:大模型可弥补翻译软件的不足,帮助学生快速翻译论文内容,如 GLM 结合良好的提示词能提高论文阅读效率。
    • 论文内容扩写润色:可将论文内容转化为社交媒体的科普内容,精心设计的润色提示词能根据特定场景调整,生成多样化润色结果,如针对小红书使用场景调整提示词。
  4. PromptAgent 相关:

    • 通过将 PromptAgent 应用于涵盖三个实用且不同领域的 12 个任务,能够发现有生产力的专家级提示词。PromptAgent 从初始人工编写的提示词和小组训练样本开始,不仅提高了初始人类提示词的性能,还超越了强大的 Chain-of-Thought (CoT) 和近期的提示词优化基线。大量定性结果突显了优化提示词的专家级方面,随着更强大 LLM 的出现,专家级的提示词引导将引领提示词工程的下一个时代,PromptAgent 站在了开创性的步骤上。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:Chain of Density 是什么

1.目标明确:不管是CoD、CoT还是ToT,确保每一步的目标清晰是非常重要的。AI需要明确的指导才能产生相关和有价值的输出。2.逻辑性:在所有提示策略中,逻辑性都是关键的。清晰、结构化的提示可以帮助AI更有效地生成输出。3.分步骤:无论是进行深度分析(如CoT)还是遵循特定的结构(如CoD),确保提示按照清晰的步骤进行是至关重要的。4.考虑变量:这在ToT中尤为重要,因为您可能会根据不同的情境或条件提供多个分支或选项。但无论在哪种情境中,都需要考虑到可能会影响结果的所有因素。所以,是的,这些原则在所有提示策略中都是通用的,且同样重要。您的观察非常精准,这些原则的通用性强调了它们在有效沟通和指导AI方面的重要性。</continuous prompts>四、【实验十二】运用CoD将文章做摘要我们尝试把之前的一篇文章,透过CoD提示做摘要(使用文章请参阅:AI如何改善保险服务价值链?——从服务体验设计服务策略开始)。提示词部分前面已分享,下面是GPT的五轮输出,摘要由粗颗粒度到细颗粒度,并分别用中英文两种方法撰写提示词。个人观点,以英文提示词最后加上中文输出的方式,效果较全中文好些,并且无论是以中文或英文写提示词,密度等级4的结果都比较让人满意(密度等级5显得过于精简而有点不知所云),这与论文结果-“总体得分倾向于更密集、信息量更丰富的摘要,其中第4轮得分最高”的结果一致。供参考。<CoD prompting>方法一:以下以中文撰写提示词的回复。【GPT】密度等级1:“Missing_Entities”:“AI在医疗大模型中的准确度;保险销售基于信任;GPT作为业务人员的个人助理“,

学术场景数据处理:论文总结翻译润色

阅读完整篇文章之后需要花费大量时间总结和梳理文章内容,而大模型可以结合有效的提示词,迅速总结概括文档,从而节省时间。[heading3]论文总结提示词[content]GLM-4-Plus结合良好的提示词能够帮助学生快速总结论文内容,提高论文梳理的效率。[heading4]总结示例[content]论文内容总结结果示例:[heading3]论文内容翻译[content]学生在阅读文献时,由于语言差异,常常需要依赖翻译工具。然而,而且现在市面上的翻译软件由于字数限制不能直接对整篇文章进行处理,大模型可以弥补这一不足,帮你更快更好地理解原文,让你高效掌握论文核心内容。[heading4]论文内容翻译提示词[content]GLM结合良好的提示词能够帮助学生快速翻译论文内容,提高论文阅读效率。[heading4]翻译示例[content]翻译结果示例:[heading3]论文内容扩写润色[content]我们可以继续将论文内容转化为社交媒体的科普内容,将复杂学术知识普及化。这不仅仅是简单的翻译,而是需要将那些充满术语和专业词汇的学术语言,转换成普通大众能够轻松理解、并且感兴趣的表达方式。[heading4]论文总结内容润色提示词[content]精心设计的润色提示词可以根据特定场景进行调整,以便生成与特定平台风格相匹配的多样化润色结果。这里是针对小红书的使用场景,调整提示词以匹配其特有的口语化、轻松愉快的氛围,从而将论文中的结论部分润色成适合在小红书上分享的生活化内容。[heading4]润色示例(小红书科普)[content]通过精心设计的润色提示词,我们能够确定不同的润色风格,从而生成多样化的润色结果。在这里,我们将论文中的结论部分稍加润色,使之更易于在小红书上分享,转化为贴近生活的帖子,让复杂的学术知识以通俗易懂的方式呈现,吸引更多普通大众的关注和兴趣。论文中结果部分:润色后结果展示:

小七姐:PromptAgent 论文精读翻译

我们证明,通过将PromptAgent应用于涵盖三个实用且不同领域的12个任务:BIG-Bench Hard(BBH)(Suzgun等人,2022),以及特定领域和一般的NLP任务,PromptAgent能够发现有生产力的专家级提示词。从一个初始的人工编写的提示词和一小组训练样本开始,PromptAgent不仅大大提高了初始人类提示词的性能,而且还显著超越了强大的Chain-of-Thought(CoT)和近期的提示词优化基线。例如,图2显示PromptAgent在GPT-3.5、GPT-4和PaLM 2中始终优于人类和自动提示词工程师(APE)(Zhou等人,2022)的基线,分别比APE提高了9.1%、7.7%和6%。大量的定性结果进一步突显了优化提示词的专家级方面,表明PromptAgent有效地弥补了具有挑战性任务中的领域差距,提供了极高的探索效率和普遍性。随着我们预期更为强大的LLM的出现,这些LLM能够理解复杂的指令,我们相信专家级的提示词引导将引领提示词工程的下一个时代,在这一研究方向中,PromptAgent站在了一个开创性的步骤上。

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
如何利用AI大模型 撰写政研文章
利用 AI 大模型撰写政研文章可以参考以下方法: 一、了解大模型的热门应用场景 大模型因其强大的语言理解和生成能力,在多个领域有出色表现,以下是一些热门应用场景: 1. 文本生成和内容创作:可用于撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:能开发与人类自然对话的工具,提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:实现代码自动补全、bug 修复和代码解释,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体、评论和反馈中的文本,识别用户情感和观点,为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频内容生成。 8. 游戏开发和互动体验:用于创建游戏角色对话、故事情节生成和增强玩家沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 需要注意的是,随着技术进步和模型优化,大模型未来可能拓展到更多领域,同时也要注意其在隐私、安全和伦理方面的挑战。 二、利用 AI 辅助写作政研文章的步骤和建议 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成政研文章的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写文章各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查文章的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保文章的原创性,并进行最后的格式调整。 请记住,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维。在使用时应保持批判性思维,确保研究质量和学术诚信。 三、Flowith 模型的优势 Flowith 模型具有以下优势: 1. 充分利用已有知识:可快速检索高质量的“存量知识”,将分散内容重新提炼、整合并利用,避免重复劳动。 2. 提高回答的准确性和完整度:基于检索与引用的方法,通过引用已有文章的论证、数据或实例,为回答提供更扎实依据,使观点更系统、逻辑更完整。 3. 节省时间,提升效率:面临类似或相关问题时,无需从头构思或反复写作,AI 大模型利用已有输出内容提供启发,减少精神内耗,避免拖延。 4. 方便追溯与验证:所有信息来自已发布文章,读者可查看完整上下文,保证回答的透明度和可信度,也为已发布文章提供二次曝光机会。
2025-03-29
用deep seek撰写出小说大纲之后,怎么给提示词让其一章一章生成
以下是关于用 DeepSeek 撰写小说大纲后,如何给提示词让其一章一章生成的相关建议: 1. 模仿小说家写作:在提示词中描述特定小说家的文风特征,如鲁迅的文风特点等。 2. 控制创作字数:使用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 3. 考虑引起共鸣和关注人类共性:用 DeepSeek 写小说要注重这方面,让好文字能引起生理和情绪共鸣。 4. 优化提示词: 模糊指令优化:如将宽泛需求“写小说”修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;将主观表述“写得专业些”修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法:首轮生成获取基础内容,然后进行特征强化、风格调整和最终校验等步骤。 5. 结合其他模型:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。 需要注意的是,DeepSeek 在写文方面全面领先,但长文会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。
2025-03-25
撰写毕业论文的AI工具哪个比较好用?
在撰写毕业论文时,以下是一些好用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,对于论文排版,以下 AI 工具可供选择: 1. Grammarly:不仅是语法和拼写检查工具,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,利用 AI 帮助创建、格式化和自动化文档生成,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择工具时应根据具体需求,如文档类型、出版标准和个人偏好来决定。学术论文常选 LaTeX 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。请注意,这些内容由 AI 大模型生成,请仔细甄别。
2025-03-14
撰写lisp语法风格提示词的教程
以下是一份关于 Lisp 语法风格提示词的教程: Lisp 是一门“古老”的编程语言,其语法核心是 List 结构,也叫“S 表达式”,典型特征是用一对括号把元素括起来,并且 List 结构里可以嵌套 List,使得程序呈现出多层括号嵌套的样子。Lisp 语法简洁且优美,具有很强的表达能力。 在提示词编程方面,李继刚写的提示词有用 Lisp 语言编写的例子。用 Lisp 写提示词具有一些特点和优势: 1. SVG 图形的丰富度和表现力可能优于 Markdown 版本。 2. 执行过程会输出中间“思考”过程,方便调试优化流程,能看到哪些步骤生成有用信息,哪些无用,还可能从中获得新灵感。 但平时写提示词用的更多的是 Markdown 语法,它简单且大语言模型能很好“理解”。对比两者,在多数场景下,从文本处理后的输出结果可能看不出太大差异,但逐步思考有正向收益。 在“情绪价值营销”中,可以用 Lisp 构建 prompt,让 Claude 直接根据用户输入输出情绪营销语句。用 Lisp 这种编程语言在 prompt 圈曾被带火,其更为凝练和简洁。当然,用 Markdown 格式写 prompt 效果也一样。 使用 Lisp 格式 prompt 时(Claude 专用),需要注意一些事项。例如,对于 GPT 等模型在卡片生成这步需要进行一些调整,不稳定,最好自定义 html/css 样式来进行强约束。使用时,直接打开 Claude 首页,发送上述提示词进行初始化,然后即可使用。
2025-03-13
文本撰写
以下是关于文本撰写的相关内容: 论文写作的 AI 产品: 在论文写作领域,AI 技术应用发展迅速,提供多方面辅助,包括文献搜索、内容生成、语言润色、数据分析等。常用的工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求选择合适的辅助工具。 情侣之间甜蜜时光记录小助手 GPT 辅助制作: 需求分析中的构思部分,文案编写使用的方法论与昨天相同。利用 Python 执行以下操作: 1. 拼接图片:在生成的图片下面添加一个背景为纯白色、高度为 512px 的图片。 2. 文本定位: 文本在新创建的空白区域内水平和垂直居中。计算文本行的累积高度以及行间距,确定文本起始垂直位置(y 坐标)。 对于水平居中,计算每行宽度,使文本中心与图像中心对齐。确保每行“代码”之间的行间距为 15px。 文本使用上传的字体,若未上传字体,提醒用户上传中文字体,字体大小设置为 55px。 为用户提供最后生成图片的下载链接。 为 Generate video(beta)编写有效的文本提示: 1. 镜头类型描述:明确摄像机视角及移动方式,例如“一个缓慢放大的特写镜头”。 2. 角色描述:包括角色身份、外貌、穿着、情绪等,例如“一只有着亮白色皮毛的大型北极熊,看起来沉思着”。 3. 动作:描述角色在场景中的行为,例如“北极熊正在轻柔而自信地走向它之前在冰上打开的洞,以便在冰面下觅食”。 4. 位置:说明角色所在地点、天气和地形,例如“该位置贫瘠且白雪皑皑;灰色的云朵在远处缓慢移动”。 5. 美学:描述镜头类型、氛围和景深等,例如“电影,35 毫米胶片,高度详细,浅景深,散景”。
2025-03-09
论文改写降重
以下是关于论文改写降重的相关信息: 在论文写作领域,AI 技术的应用正在迅速发展,为论文改写降重提供了多种辅助。以下是一些常见的方法和工具: 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,有助于提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 辅助写作方面: 一些专门的辅助写作工具,如论文改写降重工具,可以帮助文章降重和去除“AI”味。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,需要注意的是,使用 AI 生成的内容应仔细甄别。
2025-04-15
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
我要写论文,需要用什么ai工具‘
在论文写作中,以下是一些常用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用抄袭检测工具确保原创性,做最后的格式调整。 AI 文章排版工具方面: 1. Grammarly:不仅检查语法和拼写,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化过程。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化生成文档,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择合适的 AI 文章排版工具需考虑文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。
2025-04-14
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
生成论文第一章的绪论
以下是关于生成论文第一章绪论的相关内容: 首先,确定整个论文的大纲目录。如果有老师提供的示例报告,可以直接截图并用手机识别获取目录。 其次,确定整体的语言风格和特色。一般来说,论文的语言风格应是“逻辑清晰、层层递进、条理分明”。可以将范文交给 Claude 2 总结语言风格,但注意不要过于限制 GPT4,否则可能影响生成效果。 然后,让 GPT4 按照目录逐步生成章节内容。通过在 workflow 中设置循环结构,在其生成一段章节内容后,经同意再进行下一章节,否则重新生成。 此外,在生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息后再撰写。这是较难的部分,可能需要不断尝试和迭代。若遇到困难,可向星球和群聊中的大佬求助。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-04-14
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
提示词
提示词是让 AI 听懂您的需求并生成想要画面的关键。 基础公式(新手必学):景别+运镜+主体+动作+风格。示例:特写镜头|镜头旋转|发光水晶球悬浮|星尘特效|赛博朋克风格。 进阶公式(提升质感):景别+运镜+主体(细节)+动作(速率)+场景(层次)+氛围+光影。示例:全景俯拍|无人机跟拍|雪山湖泊(镜面倒影)|慢动作|冷色调光线|自然纪录片风格。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。 提示词用于描绘您想生成的画面,支持中英文输入。不同模型对输入语言有不同要求,如通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词要做到: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 借助辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15